
Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 1

MODULE – 3
RELATIONAL DATABASE DESIGN

Data Dependency/Functional Dependency
A functional dependency is an association between two attributes of the same
relational database table. One of the attributes is called the determinant and the
other attribute is called the determined. For each value of the determinant there is
associated one and only one value of the determined.

If A is the determinant and B is the determined then we say that A functionally
determines B and graphically represent this as A -> B. The symbols A & B can also
be expressed as B is functionally determined by A.

Since for each value of A there is associated one and only one value of B.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 2

Data Dependency/Functional Dependency

In this table A does not functionally
determine B.

Since for A = 3 there is associated more than
one value of B.

Functional dependency can also be defined
as follows:
An attribute in a relational model is said to
be functionally dependent on another
attribute in the table if it can take only one
value for a given value of the attribute upon
which it is functionally dependent.

A B

1 1

2 4

3 9

4 16

2 4

3 11

7 9

Data Dependency/Functional Dependency
A functional dependency denoted (FD) is denoted by X  Y, between two sets of
attributes X and Y that are subset of relation R specifies a constraint on the tuples
that can form a relation state of r of R. The constraint is that, for any two tuple t1 and
t2 in r that have t1[X] = t2[X], we must have t1[Y] = t2[Y].

It means that the values of the Y of a tuple in r depend upon or determined by, the
value of X component. Alternatively, the values of X component of a tuple uniquely
(or Functionally) determine the values of the Y component.

In other words, there is a functional dependency from X to Y or that Y is functionally
dependent on X.

Thus, X functionally determines Y in a relation schema R if and only if, whenever two
tuples of r(R) agree on their X-value, they must necessarily agree on their Y value.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 3

Data Dependency/Functional Dependency
For example, in the relation schema PROJECT of the employees, the following
functional dependencies should hold-

1. eno ename
2. pno pname, location
3. Eno, pno hours

These functional dependencies specifies that
1. The value of an employee’s number (eno) uniquely determines the employee

name (ename).
2. The value of project number (pno) uniquely determines that project name

(pname) and project location (location).
3. A combination of eno and pno values uniquely determines the number of hours

the employee works on the project per week.
Alternatively, we can say that ename is functionally determined by eno and so on.

PROJECT SCHEMA
FD 1

FD 2

FD 3

Data Dependency/Functional Dependency
Types of Functional Dependencies
There are many types of functional dependencies that depending on different
criteria-
1. Full Functional Dependency
2. Partial Dependency
3. Transitive Dependency
4. Trivial and Non-trivial Dependency
 Full Functional Dependency:

For a relation schema R and a FD, A B, B is fully functionally dependent on A if
there is no C, where C is proper subset of A, such that C B.
The Dependency A  B is left reduced, that is, there is no extraneous attributes
in left side in the dependency.

 Partial Dependency:
A functional dependency that holds in a relation is partial when removing one of
the determining attributes gives a functional dependency that holds in the
relation.
E.g. if {A,B} → {C} but also {A} → {C} then {C} is partially functionally dependent
on {A,B}.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 4

Data Dependency/Functional Dependency
 Partial Dependency:

Partial Dependency is a form of Functional dependency that holds on a set of
attributes. It is about the complete dependency of a right hand side attribute on
one of the left hand side attributes. In a functional dependency XY →Z, if Z (RHS
attribute) can be uniquely identified by one of the LHS attributes, then the
functional dependency is partial dependency.

Example:
Let us assume a relation R with attributes A, B, C, and D. Also, assume that the
set of functional dependencies F that hold on R as follows;
F = {A → B, D → C}.
From set of attributes F, we can derive the primary key. For R, the key can be
(A,D), a composite primary key. That means, AD → BC, AD can uniquely identify
B and C. But, for this case A and D is not required to identify B or C uniquely. To
identify B, attribute A is enough. Likewise, to identify C, attribute D is enough.
The functional dependencies AD → B or AD → C are called as Partial functional
dependencies.

Data Dependency/Functional Dependency
 Transitive Dependency: The functional dependency follows the mathematical

property of transitivity, which states that if A=B and B=C, then A=C. Because
ItemNo determines CategoryID, which in turn determines CategoryName and
CategoryManager, the relation contains a transitive dependency.

ItemNo Title, Price, CategoryID
CategoryId CategoryName, CategoryManager

Transitive dependencies occur when there is an indirect relationship that causes
a functional dependency.

Examples: For example, ”A -> C” is a transitive dependency when it is true only
because both “A -> B” and “B -> C” are true.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 5

Data Dependency/Functional Dependency
 Trivial and Non-trivial Dependency:

Trivial: If an FD X → Y holds where Y subset of X, then it is called a trivial FD.
Trivial FDs are always hold.
Symbolically: A → B is trivial functional dependency if B is a subset of A.
The following dependencies are also trivial:

A → A
AB → A
AB → B
B → B

For example:
Consider a table with two columns Student_id and Student_Name.

{Student_Id, Student_Name} → Student_Id
is a trivial functional dependency as Student_Id is a subset of {Student_Id,
Student_Name}. That makes sense because if we know the values of Student_Id
and Student_Name then the value of Student_Id can be uniquely determined.
Also,
Student_Id→Student_Id
Student_Name→Student_Name
are trivial dependencies too.

Data Dependency/Functional Dependency
 Trivial and Non-trivial Dependency:

Non-trivial: If an FD X → Y holds where Y is not subset of X, then it is called non-
trivial FD.
For example:
An employee table with three attributes:
emp_id, emp_name, emp_address.

The following functional dependencies are non-trivial:

emp_id→ emp_name (emp_name is not a subset of emp_id)
emp_id → emp_address (emp_address is not a subset of emp_id)

On the other hand, the following dependencies are trivial:

emp_id, emp_name → emp_name
emp_name is a subset of {emp_id, emp_name}

Completely non-trivial: If an FD X → Y holds where x intersect Y = Φ, is said to be
completely non-trivial FD.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 6

Data Dependency/Functional Dependency
Conclusion of Functional Dependency

Functional Dependencies:
 Data dependencies are constraints imposed on data in database.
 They are part of the scheme definition.
 FDs allow us to formally define keys.
 A conjecture (It has to be proven) is that a set of functional dependencies

and one join dependency are enough to express the dependency structure
of a relational database scheme.

Motivation:
Functional dependencies help in accomplishing the following two goals:

(a) controlling redundancy and
(b) enhancing data reliability.

Data Dependency/Functional Dependency

Problematic Issue:
Representing the set of all FDs for a relation R.

Solution:
 Find a basic set of FDs.
 Use axioms for inferring.
 Represent the set of all FDs as the set of FDs that can be inferred from the basic

set of FDs.

Axioms:
An inference axiom is a rule that states if a relation satisfies certain FDs then it must
satisfy certain other FDs.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 7

Data Dependency/Functional Dependency
Armstrong’s axioms are a set of axioms (or, more precisely, inference rules) used to
infer all the functional dependencies on a relational database. They were developed
by William W. Armstrong.

FD manipulations:
Soundness -- no incorrect FD's are generated
Completeness -- all FD's can be generated

Let R(U) be a relation scheme over the set of attributes U. We will use the letters X, Y,
Z & W to represent any subset of and, for short, the union of two sets of attributes
and by instead of the usual X U Y.

F1. Reflexivity X → X
F2. Augmentation If (Z W; X → Y) then XW → YZ
F3. Additivity If { (X → Y) (X → Z)} then X → YZ
F4. Projectivity If (X → YZ) then X → Y
F5. Transitivity If (X → Y) and (Y → Z) then (X → Z)
F6. Pseudotransitivity If (X → Y) and (YZ → W) then XZ → W

Data Dependency/Functional Dependency

Axiom Name Axiom Example

Reflexivity if a is set of attributes, b ⊆ a, then a →b SSN,Name → SSN

Augmentation if a→ b holds and c is a set of attributes,
then ca→cb

SSN → Name then
SSN,Phone → Name, Phone

Transitivity if a →b holds and b→c holds, then a→ c
holds

SSN →Zip and Zip→City
then SSN →City

Union or Additivity * if a → b and a → c holds then a→ bc
holds

SSN→Name and
SSN→Zip
then SSN→Name,Zip

Decomposition or
Projectivity*

if a → bc holds then a → b and a → c
holds

SSN→Name,Zip
then SSN→Name

and SSN→Zip

Pseudotransitivity* if a → b and cb → d hold then ac → d
holds

Address → Project and
Date→Amount then
Address,Date → Amount

(NOTE) ab→ c does NOT imply a → b and b → c

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 8

Data Dependency/Functional Dependency

Prove or disprove the following inference rules for functional dependencies-
i. {W →Y, X →Z }  {WX → Y}
ii. {X → Y} and Y  Z  {X →Z}
iii. {X → Y, Y →Z}  {X → YZ}
iv. {X → Z, Y →Z}  {X →Y}
v. {XY → Z, Z →W}  {X →W}

i. {W →Y, X →Z }  {WX → Y}
Given

W →Y --------- (a)
X →Z --------- (b)

by augmenting in (a) by X
WX → XY ------- (c)

by decomposing in (c)
WX → Y Hence, it is proved.

Data Dependency/Functional Dependency

Prove or disprove the following inference rules for functional dependencies-
ii. {X → Y} and Y  Z  {X →Z}

Given
X →Y --------- (a)

Y  Z and that two tuples t1 and t2 exist in some relation instance r of R such
that t1[Y] = t2[Y]. Then t1[Z] = t2[Z] because Y  Z ; hence Y →Z must hold.

by transitivity X → Y and Y →Z then X →Z. Hence, it is proved.

iii. {X → Y, Y →Z}  {X → YZ}
Given

X →Y --------- (a)
Y →Z --------- (b)

by augmentation rule on (b) by Y
Y →YZ --------- (c)

and by transitivity rule on (a) and (c)
X →Y and Y →YZ  {X → YZ}

Hence, it is proved.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 9

Data Dependency/Functional Dependency

Prove or disprove the following inference rules for functional dependencies-
iv. {X → Z, Y →Z}  {X →Y}

Given X → Z i.e. X Z and that any two tuples t1 and t2 of relation R such that
t1[X] = t2[X] then t1[Z] = t2[Z].

Also given Y → Z i.e. Y Z and that any two tuples t1 and t2 of relation R such
that t1[Y] = t2[Y] then t1[Z] = t2[Z].
This implies that X Y; i.e. X →Y. Hence, it is proved.

iv. {XY → Z, Z →W}  {X →W}
Given

XY →Z --------- (a)
Z →W --------- (b)

by transitivity rule on (a) and (c)
XY →Z and Z →W  {XY → W} -------- (c)

by decomposition rule on (c)
X → W, Y → W

Hence, it is proved.

Data Dependency/Functional Dependency

Closure of Functional Dependencies
Suppose F is a Set of functional dependencies for a given relation R. Then,
Closure of F:
It is a set of all functional dependencies that include F as well as all dependencies
that are inferred from F. It is denoted by

F+
X → Y is inferred from F specified in R if X → Y holds in every legal relation state r of
R.
By applying the following 6 inference rules, we can inferred FDs of F.

1. Reflexivity X → X
2. Augmentation If (Z W; X → Y) then XW → YZ
3. Additivity If { (X → Y) (X → Z)} then X → YZ
4. Projectivity If (X → YZ) then X → Y
5. Transitivity If (X → Y) and (Y → Z) then (X → Z)
6. Pseudotransitivity If (X → Y) and (YZ → W) then XZ → W

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 10

Data Dependency/Functional Dependency

Example for Closure of F:
Suppose we are given a relation scheme R=(A,B,C,G,H,I), and the set of functional
dependencies:

A → B
A → C

CG → H
CG → I
B → H

Applying the rules to the scheme and set F mentioned above, we can derive the
following:
1. A → H, as we saw by the transitivity rule.
2. CG → HI by the union rule.
3. AG → I by several steps:

i. Note that A → C holds.
ii. Then AG → CG , by the augmentation rule.
iii. Now by transitivity, AG → I .

(You might notice that this is actually pseudotransivity if done in one step.)

Data Dependency/Functional Dependency
Example for Closure of F:
Assume that there are 4 aƩributes A, B, C, D, and that F = {A → B, B → C}. Then, F +
includes all the following:

FDs: A → A, A → B, A → C, B → B, B → C, C → C, D → D, AB → A, AB → B, AB → C, AC
→ A, AC → B, AC → C, AD → A, AD → B, AD → C, AD → D, BC → B, BC → C, BD → B,
BD → C, BD → D, CD → C, CD → D, ABC → A, ABC → B, ABC → C, ABD → A, ABD → B,
ABD → C, ABD → D, BCD → B, BCD → C, BCD → D, ABCD → A, ABCD → B, ABCD → C,
ABCD → D.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 11

Data Dependency/Functional Dependency
Example for Closure of F:
Assume that there are 4 aƩributes A, B, C, D, and that F = {A → B, B → C}.
To compute F+,
we first get:

A+ = AB+ = AC+ = ABC+ = {A, B, C}
B+ = BC+ = {B, C}
C+ = {C}
D+ = {D}
AD+ = {A, D}
BC+ = {B, C}
BD+ = BCD+ = {B, C, D}
ABD+ = ABCD+ = {A, B, C, D}
ACD+ = {A, C, D}

It is easy to generate the FDs in F + from the closures of the above attribute sets.

Data Dependency/Functional Dependency

Closure of Attribute
Define the closure of α under F (denoted by α+) as the set of attributes that are
functionally determined by α under F:

α → β is in F+⇔ β ⊆ α+
• Algorithm to compute α+, the closure of α under F

result := α;
while (changes to result) do

for each β → γ in F do
begin
if β ⊆ result then result := result ∪ γ;
end

Example:
R = (A, B, C, G, H, I) and F = {A → B A → C CG → H CG → I B → H}
• (AG+)

1. result = AG
2. result = ABCG (A → C and A ⊆ AGB)
3. result = ABCGH (CG → H and CG ⊆ AGBC)
4. result = ABCGHI (CG → I and CG ⊆ AGBCH)

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 12

Data Dependency/Functional Dependency

Finding Candidate Key
Let F be a set of FDs, and R a relation.

A candidate key is a set X of attributes in R such that
• X + includes all the attributes in R.
• There is no proper subset Y of X such that Y + includes all the attributes in R.

Note: A proper subset Y is a subset of X such that Y != X (i.e., X has at least one
element not in Y).

Example.
Consider a table R(A, B, C, D), and that F = {A → B, B → C}.

A is not a candidate key, because A + = {A, B, C} which does not include D.
ABD is not a candidate key even though ABD+ = {A, B, C, D}.
This is because AD+ = {A, B, C, D}, namely, there is a proper subset AD of ABD such
that AD+ includes all the attributes. AD is a candidate key.

Data Dependency/Functional Dependency
Finding Candidate Key
Example.
Consider a table R(A, B, C, D, E, F), and that F = {A → C, C → D, D → B, E → F}.
Find all the possible candidate key.

Given A → C, A determines C
C → D, C determines D
D → B, D determines B
E → F E determines F

Now, the easiest way is to find which attributes are not determined. In this example,
A and E are not determined. Then, find out the closure of (AE)+.

(AE)+ = AE
= ACE
= ACDE
= ACDBE
= ACDBEF

Closure of AE has all the attributes. Thus, AE is a candidate key. In this way, we can
find out more candidate keys for this problem.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 13

Normalization
While designing a database out of an entity–relationship model, the main problem
existing in that “raw” database is redundancy. Redundancy is storing the same data
item in more one place. A redundancy creates several problems like the following:

 Extra storage space: storing the same data in many places takes large amount

of disk space.

 Entering same data more than once during data insertion.

 Deleting data from more than one place during deletion.

 Modifying data in more than one place.

 Anomalies may occur in the database if insertion, deletion, modification etc

are no done properly. It creates inconsistency and unreliability in the

database.
To solve this problem, the “raw” database needs to be normalized. This is a step by
step process of removing different kinds of redundancy and anomaly at each step. At
each step a specific rule is followed to remove specific kind of impurity in order to
give the database a slim and clean look.

Normalization
Normalization of Database

Database Normalization is a technique of organizing the data in the database.

Normalization is a systematic approach of decomposing tables to eliminate data

redundancy and undesirable characteristics like Insertion, Update and Deletion

Anomalies. It is a multi-step process that puts data into tabular form by removing

duplicated data from the relation tables.

Normalization is used for mainly two purpose,

 Eliminating redundant(useless) data.

 Ensuring data dependencies make sense i.e. data is logically stored.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 14

Normalization
Un-Normalized Form (UNF)
If a table contains non-atomic values at each row, it is said to be in UNF. An atomic
value is something that can not be further decomposed. A non-atomic value, as the
name suggests, can be further decomposed and simplified. Consider the following
table:

In the sample table above, there are multiple occurrences of rows under each key
Emp-Id. Although considered to be the primary key, Emp-Id cannot give us the
unique identification facility for any single row. Further, each primary key points to a
variable length record (3 for E01, 2 for E02 and 4 for E03).

Emp-Id Emp-Name Month Sales Bank-Id Bank-Name

E01 AA Jan 1000 B01 SBI
Feb 1200
Mar 850

E02 BB Jan 2200 B02 UTI
Feb 2500

E03 CC Jan 1700 B01 SBI
Feb 1800
Mar 1850
Apr 1725

Normalization
Problems without Normalization
If a database design is not perfect, it may contain anomalies, which are like a bad
dream for any database administrator. Managing a database with anomalies is next
to impossible.
Update anomalies − If data items are scattered and are not linked to each other
properly, then it could lead to strange situations. For example, when we try to update
one data item having its copies scattered over several places, a few instances get
updated properly while a few others are left with old values. Such instances leave the
database in an inconsistent state.

Deletion anomalies − We tried to delete a record, but parts of it was left undeleted
because of unawareness, the data is also saved somewhere else.

Insert anomalies − We tried to insert data in a record that does not exist at all.
Normalization is a method to remove all these anomalies and bring the database to a
consistent state.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 15

Normalization
Normalization Rule
Normalization rule are divided into following normal form.

 First Normal Form
 Second Normal Form
 Third Normal Form
 BCNF
 Fourth Normal Form
 Fifth Normal Form (PJNF)

First Normal Form (1NF)
A relation is in first normal form if it meets the definition of a relation:

 Each attribute (column) value must be a single value only.
 All values for a given attribute (column) must be of the same type.
 Each attribute (column) name must be unique.
 The order of attributes (columns) is insignificant
 No two tuples (rows) in a relation can be identical.
 The order of the tuples (rows) is insignificant.

If you have a key defined for the relation, then you can meet the unique
row requirement.

Normalization
First Normal Form (1NF)
A relation is said to be in 1NF if it contains no non-atomic values and each row can
provide a unique combination of values. The above table in UNF can be processed to
create the following table in 1NF.

As you can see now, each row contains unique combination of values. Unlike in UNF,
this relation contains only atomic values, i.e. the rows can not be further
decomposed, so the relation is now in 1NF.

Emp-Id Emp-Name Month Sales Bank-Id Bank-Name

E01 AA Jan 1000 B01 SBI
E01 AA Feb 1200 B01 SBI
E01 AA Mar 850 B01 SBI
E02 BB Jan 2200 B02 UTI
E02 BB Feb 2500 B02 UTI
E03 CC Jan 1700 B01 SBI
E03 CC Feb 1800 B01 SBI
E03 CC Mar 1850 B01 SBI
E03 CC Apr 1725 B01 SBI

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 16

Normalization

Company Symbol Headquarters Date Close Price

Microsoft MSFT Redmond, WA 09/07/2013 23.96

Microsoft MSFT Redmond, WA 09/08/2013 23.93

Microsoft MSFT Redmond, WA 09/09/2013 24.01

Oracle ORCL Redwood Shores, CA 09/07/2013 24.27

Oracle ORCL Redwood Shores, CA 09/08/2013 24.14

Oracle ORCL Redwood Shores, CA 09/09/2013 24.33

Company Symbol Headquarters Date Close Price

Microsoft MSFT Redmond, WA 09/07/2013 23.96

09/08/2013 23.93

09/09/2013 24.01

Oracle ORCL Redwood Shores, CA 09/07/2013 24.27

09/08/2013 24.14

09/09/2013 24.33

Un-Normal Form
Table

Table in First
Normal Form

Normalization
Second Normal Form (2NF)
A relation is said to be in 2NF f if it is already in 1NF and each and every attribute
fully depends on the primary key of the relation. Speaking inversely, if a table has
some attributes which is not dependant on the primary key of that table, then it is
not in 2NF.
Let us explain. Emp-Id is the primary key of the above relation. Emp-Name, Month,
Sales and Bank-Name all depend upon Emp-Id. But the attribute Bank-Name depends
on Bank-Id, which is not the primary key of the table. So the table is in 1NF, but not in
2NF. If this position can be removed into another related relation, it would come to
2NF.

Emp-Id Emp-Name Month Sales Bank-Id
E01 AA JAN 1000 B01
E01 AA FEB 1200 B01
E01 AA MAR 850 B01
E02 BB JAN 2200 B02
E02 BB FEB 2500 B02
E03 CC JAN 1700 B01
E03 CC FEB 1800 B01
E03 CC MAR 1850 B01
E03 CC APR 1726 B01

Bank-Id Bank-Name
B01 SBI
B02 UTI

n can be removed into another related relation, it would come to 2NF.

After removing the portion into another
relation we store lesser amount of data in
two relations without any loss
information. There is also a significant
reduction in redundancy.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 17

Normalization
The following example relation is not in 2NF:
STOCKS (Company, Symbol, Headquarters, Date, Close_Price)
To start the normalization process, list the functional dependencies (FD):

FD1: Symbol, Date → Company, Headquarters, Close Price
FD2: Symbol → Company, Headquarters

Consider that Symbol, Date → Close Price. So we might use Symbol, Date as our key.
However we also see that: Symbol → Headquarters

 This violates the rule for 2NF in that a part of our key. key determines a non-
key attribute.

 Another name for this is a Partial key dependency. Symbol is only a “part” of
the key and it determines a non-key attribute.

 Also, consider the insertion and deletion anomalies.

One Solution:
Split this up into two new relations:
COMPANY (Company, Symbol, Headquarters)
STOCK_PRICES (Symbol, Date, Close_Price)

Normalization
Company Symbol Headquarters Date Close Price

Microsoft MSFT Redmond, WA 09/07/2013 23.96

Microsoft MSFT Redmond, WA 09/08/2013 23.93

Microsoft MSFT Redmond, WA 09/09/2013 24.01

Oracle ORCL Redwood Shores, CA 09/07/2013 24.27

Oracle ORCL Redwood Shores, CA 09/08/2013 24.14

Oracle ORCL Redwood Shores, CA 09/09/2013 24.33

• At this point we have
two new relations in our
relational model. The
original “STOCKS”
relation we started with
is removed form the
model.

• Sample data and
functional dependencies
for the two new
relations:

• COMPANY Relation:

Company Symbol Headquarters

Microsoft MSFT Redmond, WA

Oracle ORCL Redwood Shores, CA

Symbol Date Close Price

MSFT 09/07/2013 23.96

MSFT 09/08/2013 23.93

MSFT 09/09/2013 24.01

ORCL 09/07/2013 24.27

ORCL 09/08/2013 24.14

ORCL 09/09/2013 24.33

FD1: Symbol, Date → Company, Headquarters, Close Price

FD2: Symbol → Company, Headquarters

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 18

Normalization
Third Normal Form (3NF)
A relation is in third normal form (3NF) if it is in second normal form and it contains
no transitive dependencies.
Consider relation R containing attributes A, B and C. R(A, B, C)
If A → B and B → C then A → C
Transitive Dependency: Three attributes with the above dependencies.
Example: At CUNY:

Course_Code → Course_Number, Section
Course_Number, SecƟon → Classroom, Professor

Consider one of the new relations we created in the STOCKS example for 2nd normal
form:
The functional dependencies we can see are:

FD1: Symbol → Company
FD2: Company → Headquarters

so therefore: Symbol → Headquarters
This is a transitive dependency.
What happens if we remove Oracle?
We loose information about 2 different facts.

n can be removed into another related relation, it would come to 2NF.

Company Symbol Headquarters

Microsoft MSFT Redmond, WA

Oracle ORCL Redwood Shores, CA

Normalization
The solution again is to split this relation up into two new relations:

STOCK_SYMBOLS(Company, Symbol)
COMPANY_HEADQUARTERS(Company, Headquarters)

This gives us the following sample data and FD for the new relations

FD1: Symbol → Company FD2: Company → Headquarters

Company Symbol

Microsoft MSFT

Oracle ORCL

Company Headquarters

Microsoft Redmond, WA

Oracle Redwood Shores, CA

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 19

Normalization
Boyce-Codd Normal Form (BCNF)
 A relation is in BCNF if every determinant is a candidate key.
 Recall that not all determinants are keys.
 Those determinants that are keys we initially call candidate keys.
 Eventually, we select a single candidate key to be the key for the relation.
 Consider the following example:

 Funds consist of one or more Investment Types.
 Funds are managed by one or more Managers
 Investment Types can have one more Managers
 Managers only manage one type of investment.

Relation: FUNDS (FundID, InvestmentType, Manager)
FD1: FundID, InvestmentType → Manager
FD2: FundID, Manager → InvestmentType
FD3: Manager → InvestmentType

FundID InvestmentType Manager

99 Common Stock Smith

99 Municipal Bonds Jones

33 Common Stock Green

22 Growth Stocks Brown

11 Common Stock Smith

Normalization
 In this case, the combination FundID and InvestmentType form a candidate

key because we can use FundID,InvestmentType to uniquely identify a tuple in
the relation.

 Similarly, the combination FundID and Manager also form a candidate
key because we can use FundID, Manager to uniquely identify a tuple.

 Manager by itself is not a candidate key because we cannot use Manager alone
to uniquely identify a tuple in the relation.

 Is this relation FUNDS(FundID, InvestmentType, Manager) in 1NF, 2NF or 3NF ?
Given we pick FundID, InvestmentType as the Primary Key:
 1NF for sure.
 2NF because all of the non-key attributes (Manager) is dependant on all of

the key.
 3NF because there are no transitive dependencies.

 However consider what happens if we delete the tuple with FundID 22. We loose
the fact that Brown manages the InvestmentType “Growth Stocks.”

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 20

Normalization
 Therefore, while FUNDS relation is in 1NF, 2NF and 3NF, it is in BCNF because not

all determinants (Manager in FD3) are candidate keys.
 The following are steps to normalize a relation into BCNF:

 List all of the determinants.
 See if each determinant can act as a key (candidate keys).
 For any determinant that is not a candidate key, create a new relation from

the functional dependency. Retain the determinant in the original relation.
 For our example:FUNDS (FundID, InvestmentType, Manager)
 The determinants are:FundID, InvestmentType FundID, Manager Manager
 Which determinants can act as keys?

FundID, InvestmentType YES
FundID, Manager YES
Manager NO

 Create a new relation from the functional dependency:
MANAGERS(Manager, InvestmentType),
FUND_MANAGERS(FundID, Manager)

In this last step, we have retained the determinant “Manager” in the original relation
MANAGERS.Each of the new relations should be checked to ensure they meet the
definitions of 1NF, 2NF, 3NF and BCNF

Normalization
 For our example:FUNDS (FundID, InvestmentType, Manager)
 The determinants are:FundID, InvestmentType FundID, Manager Manager
 Which determinants can act as keys?

FundID, InvestmentType YES
FundID, Manager YES
Manager NO

 Create a new relation from the functional dependency:
MANAGERS(Manager, InvestmentType),
FUND_MANAGERS(FundID, Manager)

In this last step, we have retained the determinant “Manager” in the original relation
MANAGERS. Each of the new relations should be checked to ensure they meet the
definitions of 1NF, 2NF, 3NF and BCNF

InvestmentType Manager

Common Stock Smith

Municipal Bonds Jones

Common Stock Green

Growth Stocks Brown

Common Stock Smith

FundID Manager

99 Smith

99 Jones

33 Green

22 Brown

11 Smith

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 21

Normalization
Fourth Normal Form (4NF)
A relation is in fourth normal form if it is in BCNF and it contains no multivalued
dependencies.
Multivalued Dependency: A type of functional dependency where the determinant
can determine more than one value.
More formally, there are 3 criteria:

 There must be at least 3 attributes in the relation. call them A, B, and C, for
example.

 Given A, one can determine multiple values of B.
 Given A, one can determine multiple values of C.
 B and C are independent of one another.

Book example:
Student has one or more majors.
Student participates in one or more activities.

FD1: StudentID →→ Major
FD2: StudentID →→ AcƟviƟes

Normalization
A few characteristics:
 No regular functional dependencies
 All three attributes taken together form the key.
 Later two attributes are independent of one another.
 Insertion anomaly: Cannot add a stock fund without adding a bond fund (NULL

Value). Must always maintain the combinations to preserve the meaning.
Stock Fund and Bond Fund form a multivalued dependency on Portfolio ID.

PortfolioID →→ Stock Fund
PortfolioID →→ Bond Fund

Portfolio ID Stock Fund Bond Fund

999 Janus Fund Municipal Bonds

999 Janus Fund Dreyfus Short-Intermediate Municipal Bond Fund

999 Scudder Global Fund Municipal Bonds

999 Scudder Global Fund Dreyfus Short-Intermediate Municipal Bond Fund

888 Kaufmann Fund T. Rowe Price Emerging Markets Bond Fund

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 22

Normalization
Resolution: Split into two tables with the common key:

Portfolio ID Stock Fund

999 Janus Fund

999 Scudder Global Fund

888 Kaufmann Fund

Portfolio ID Bond Fund

999 Municipal Bonds

999 Dreyfus Short-Intermediate Municipal Bond Fund

888 T. Rowe Price Emerging Markets Bond Fund

Normalization
Fifth Normal Form (5NF)
 Also called “Projection Join” Normal form.
 There are certain conditions under which after decomposing a relation, it cannot

be reassembled back into its original form.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 23

Canonical Cover (Fc) of FDs
Canonical Cover (Fc)
Canonical cover (Fc) is a minimal set of FDs equivalent to F.
1. No FDs in Fc contains extraneous attributes.
2. Each LHS (Left Hand Side) of FD in Fc is unique.

Algorithm
i/p  F
o/p  Fc

repeat
1. Use the decompose rule to replace

a1  b1 & a1 b2
by a1  b1b2

2. Find FD a  b which has an extraneous attribute ‘A’ and remove A from
a  b

3. Remove redundant FD
Until F does not change

Canonical Cover (Fc) of FDs
Steps to find out Canonical Cover (Fc)
1. Singleton RHS (Right Hand Side)
2. Removal of extraneous attribute
3. Removal of Redundant FD

Consider two sets of FDs
F = { AB, AB C, DAC, DE}
G= { ABC, DAB}
Which one is true?
a) F covers G
b) G covers F
c) F & G are equal
d) None
Let us consider first set of FDs F = { AB, AB C, DAC, DE}
1. Here given DAC apply decompose rule DA, DC
2. After this FDs are F = { AB, AB C, DA, DC, DE}

Only one FD is a partial FD AB C where B is extraneous. Because, A+ = AB & B+
= B.

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 24

Canonical Cover (Fc) of FDs
3. Now find out redundant FDs

F = { AB, A C, DA, DC, DE}
redundant FD can be find out by finding closure of each attribute set of FD,
without any help of that FD.
for example:
AB For this FD calculate A+ and try to derive B from A without help of AB
is it possible? No, then it is non-redundant.

A+ = AC
ABC For this FD calculate AB+ and try to derive C from AB without help of
ABC is it possible? No, then it is non-redundant.
A+ = AB
DA For this FD calculate D+ and try to derive A from D without help of DA
is it possible? No, then it is non-redundant.

D+ = DCE
DC For this FD calculate D+ and try to derive C from D without help of DC
is it possible? Yes, then it is redundant.

D+ = DAEBC
DE For this FD calculate D+ and try to derive E from D without help of DE
is it possible? No, then it is non-redundant.

D+ = DACB

Canonical Cover (Fc) of FDs
Hence Fc for given FD set F = { AB, A C, DA, DC, DE} is
Fc = { AB, A C, DA, DE}
Similarly, we’ll consider G = { ABC, DAB}
1. Here given ABC, DAB apply decompose rule AB, A C, DA, DB
2. After this FDs are G = {AB, A C, DA, DB}

Here, No FD has extraneous attribute. Follow third step
3. Now find out redundant FDs

G = {AB, A C, DA, DB}
AB For this FD calculate A+ and try to derive B from A without help of AB
is it possible? No, then it is non-redundant.

A+ = AC
ABC For this FD calculate AB+ and try to derive C from AB without help of
ABC is it possible? No, then it is non-redundant.
A+ = AB
DA For this FD calculate D+ and try to derive A from D without help of DA
is it possible? No, then it is non-redundant.

D+ = DB
D B For this FD calculate D+ and try to derive C from D without help of DB
is it possible? Yes, then it is redundant.

D+ = DABC

Module 3 Database Design (FD & Normalization) 8/25/2023

Prepared by: Dr. Mukesh Bathre 25

Canonical Cover (Fc) of FDs
Hence Gc for given FD set G = { AB, A C, DA, DB} is

Gc = { AB, A C, DA}

Now, Compare Fc and Gc
Fc = { AB, A C, DA, DE}
Gc = { AB, A C, DA}

a) F covers G
b) G covers F
c) F & G are equal
d) None

Answer is d) None

