Three Phase System:

e The system utilizing one winding is referred to as single phase system. Similarly, the
system utilizing two winding is referred to as two phase system and the system utilizing
three winding is referred to as three phase system.

Generation of three phase emfs:

e RRy, YY1, BB: represent three similar loops/coils fixed to one another at an angle of
120° as shown in fig. 2.1 (a)

e Each loop terminating in a pair of slip-rings carried on the shaft as shown in fig. 2.1 (b)

e R, Y, B are the finishing ends and Rz, Y1, B are the starting ends of the loops.

e R stands for Red, Y stands for yellow and B stands for blue and these are the colors
used to identify the three phases.

() (b)

Fig. 2.1 (a) Generation of three phase emfs and (b) Loop RR: at the instant of maximum emf
with positive direction of voltages in coil sides.

Fig. 2.2 Waveforms of three-phase emfs.
e The three coils are rotated anticlockwise at a uniform speed in the magnetic field due
to the two poles and hence, alternating emf will be generated in the three coils.
¢ The instantaneous value of the three emfs induced in the coils are given by the following
equations and the waveforms of the three emfs are shown in fig. 2.2.



egr = E,Sing
ey = E,,Sin(6-120")
eg = E,Sin(0—-240°) = E ,Sin(6 +120°)

e The emfs being assumed positive when their directions round the loops are from start
to finish of their respective loops. For instance, the assumed positive direction of emf
for coil RRyis shown in fig 2.1 (b).

e The three phase emfs can be generated by any of the following arrangements:

0] stationary field and rotating coils as shown in fig. 2.3 (a)

or
(i)  stationary coils and rotating field as shown in fig. 2.3 (b)

(a) (b)

Fig. 2.3 Generation of three phase emfs (a) stationary field and rotating coils, (b) stationary
coils and rotating field

e The generation of single phase emf is explained in fig. 2.4.

(a) (b)

Fig. 2.4 Generation of single phase emf (a) stationary field and rotating coils, (b) stationary
coils and rotating field



(i)

The phase displacement in a polyphase system is given by 360° /n, where 'n'is the
number of phases or windings. This formula holds good for any polyphase system
except then two-phase system in which case the phase displacement is 90°.
Hence, in a three-phase system, the phase displacement is 360%/3 = 120°.
Advantages of three phase system over single-phase system are:
Its more efficient, (ii) it uses less conducting material for a given capacity, (iii) it
costs less than single-phase system for a given capacity.

Interconnection of three phases:

(i)

If the three coils are not interconnected then, it requires six conductors for transmission
of power from source to load as shown in fig. 2.5 which is cumbersome and expensive.
Hence, the three coils/phases are interconnected to save copper in which case the nos.
of conductors are reduced to either 3 or 4.

Fig. 2.5 Three phase windings with six-line conductors.

The two methods of interconnection are:
Delta (A) Connection and (ii) Star (Y) Connection.

Delta (A) Connection:

Dissimilar ends of the coils are joined together to form a delta connection i.e., finish’
end of one coil is joined to the ‘start’ end of the other coil and the power is transmitted
from source to the load through the outer wires known as ‘line conductors’ joined to
the junctions where the dissimilar ends are joined as shown in fig. 2.7.

The resultant emf around the loop is eg +ey +eg as shown in fig. 2.6 and at any given

instant, the resultant emf acting around the loop is zero and therefore there is no
circulating current flowing in the loop as proved below.



eg +ey +eg = E,[Sind+Sin(6-120°) + Sin( 6 - 240°)
= E,(Sind + Sin@.Cos120° —CosA.Sin120" + Sind.C0s240° — C0sH.Sin240°)
= E,,,(Sin@—0.5Sind —0.866Cos6 — 0.5Siné + 0.866CosH)
=0

Fig. 2.6 Resultant emf in delta connection.

(a) (b)
Fig. 2.7 (a) Delta connection of three-phase winding, (b) Conventional representation of delta
connection

Star (Y) Connection:

e As shown in fig. 2.8, similar ends of the coils are joined together to form a star
connection i.e. either start or finish ends of the coils are joined together at one point and
this point is known as star or neutral point.

e Power from source to load is transmitted through the outer wires known as ‘line
conductors’ connected to the remaining end as shown in fig. 2.8.

e The wire connected to the neutral point is known as common wire or neutral wire. MN
is common wire or neutral wire as shown in fig. 2.8.

¢ Since the generated emf has been assumed positive when acting from start to finish, the
current in each phase must also be regarded as positive when flowing in that direction
as represented by the arrows as shown in fig. 2.8.



Fig. 2.8 Star connection of three phase windings (Three-phase four wire system)

The summation of instantaneous value of the currents at the neutral point is
ig +ly +ig.
Three phase loads are connected between the line conductors and single-phase loads
are connected between the line and the neutral conductor.
If the three loads in a three-phase system are exactly alike then it is called as balanced
load.
The phase currents have the same peak value, and differ in phase by 120° if the three-
phase system is balanced.
For balanced load, the currents in the three phases are given by:
ig =1,,Sing
iy =1,Sin(0-120")
ig =1 ,Sin(@—-240") =1 ,,Sin(6+120")
Hence, the instantaneous value of the resultant current in neutral conductor MN is:

iy +iy +ig = | [SiN@+Sin(#-120°) + Sin(#- 240°)

= 1,(Sind + Sind.Cos120° — C0sA.Sin120° + Sind.Cos240° —Cos0.Sin240°)
= I,,(Sin@—0.5Sind —0.866Cosd — 0.5Sind + 0.866CosH)

This means that for a balanced system, the current flowing outwards in one or two
conductors is equal to that flowing back in the remaining conductor or conductors as
shown in fig. 2.9.

For a balanced load, the neutral conductor may be removed to supply power to a three-
phase load and the system is now referred to as three phase three wire system as shown
in fig. 2.9 (a).



e When the neutral conductor is present, the system is referred to as three phase four wire
system as shown in fig. 2.8.

(b)

Fig. 2.9 (a) Three-phase three-wire star connected system with balanced load, (b) Waveforms
of currents in a balanced three-phase system.

Phase voltage and phase current in 3-phase system:

e Phase means winding. So, the voltage available across the winding is called phase
voltage and the current flowing through the winding is called the phase current.

Line voltage and line current in 3-phase system:

e Line means outer wire or conductor through which the power transmission takes place
from source to the load. Hence, the voltage available between any pair of line



conductors is called the line voltage and the current flowing through the line conductor
is called the line current.

Voltages and currents in a star-connected system:

e It is assumed that the emf in each phase to be positive when acting from the neutral
point outwards, so that the rms values of the emfs generated in the three phases can be
represented by Eg, Ey and Eg as shown in fig. 2.10 and 2.11.

e For a balanced system, Eg = Ey = Eg =V, and these three phase voltages will be

displaced from each other by an angle 120%

(a) (b)
Fig. 2.10 (a) Star connection (b) Phasor diagram showing phase voltages and currents
in star connection

Fig. 2.11 Phasor diagram for computation of line voltage in star connection.

Voltage Vgy between line 1 and line 2 is given by Vgy =-Ey + EgR = Eg - Ey

Voltage Vyg between line 2 and line 3 is given by Vyg =-Eg + Ey = Ey - Ep

Voltage Vg between line 3 and line 1 is given by Vgr = -Egr + Eg = Eg - ER

From the phasor diagram shown in fig. 2.11, the value of the line voltages can be calculated
as follows.



- o \/é

- Instar connection, V| = \/§Vph
Alternatively, the line voltages can be computed analytically as follows.
Er =Vpn4£0” =V (Cos0” + jSin0") =V, + jO
Ey =Vpn£-120" =V [Cos(-120") + jSin(-120")] = -0.5V, — j0.866V ,
Eg =Vph£120° =V [Cos(120°) + jSin(120°)] = 0.5V, + jO.866V

.. Thethreelinevoltages are :
Vry = Eg = Ey =V + j0+0.5V, + j0.866V, =V, (1.5 + j0.866) = v/3V,y, £30°

Vyg = Ey — Eg =-0.5V,;, — j0.866V y, + 0.5V, — j0.866V y, =V (0— j1.732) = +/3V 5 £ —90°
Vgr = Eg — Eg =-0.5V,;, + jO.866V,y, —Vyp — j0 =V, (-1.5+ j0.866) = V/3V, £150°
.. Instar connection, V| = \@Vph
e From fig. 2.10 (a), it is clear that the same current flows through the phase and the line
as the line conductors are connected in series with each phase which means line current
I _and phase current |, are same in star connection.

- Instar connection, I =1,

e The following points may be noted.
(i) Line voltages are 120° apart.
(i)  Line voltages are 30° ahead of their respective phase voltages.
(iii))  Angle between the line voltage and corresponding line current is (30+@) for
lagging pf and (30 - @) for leading pf.
Power:
Power / Phase, S, =V | ph* = (VpnZ0°) (1 pn £ £ ¢6°) =Vppl pn £ £¢° =V 5y (Cosg® + jSing®)
= Power / Phase, Sy, =V pplpnZ £¢° =Vl 5nCosg® + jV 1, Sing® = P o, £jQ oy
Apparent Power / Phase = S oh=Ypn ! ph
Active Power / Phase = P ,=V,1 ;,Cosg°
Reactive Power / Phase =Q = ivphlphSin¢° (+'sign for lagging pf and '-'sign for leading pf )
Total Power = S =3V, | o =3Vl pn £ £6° =3V 15y Cosg® + 3V 1, Sing® = P + jQ

\Y
Total Apparent Power =S =3V, | 5 = 3TI:?>X I, =3V, 1,
. \Y
Total Active Power = P =3V, 1, Cosg® = 3T; x 1 xCosg® = \/§V|_ I, _Cosg°

. i Vv .
Total Reactive Power = Q = %3V 1 ,Sing° = 13TL3>< I, xSing®

= J_r\/§V,_I|_Sin¢° (‘+'sign for lagging pf and '-'sign for leading pf)

Currents and voltages in a delta-connected system:

e Let Ig, Iyand Ig be the rms values of the phase currents having their positive

directions as indicated by the arrows in fig. 2.12 and 2.13.
e For a balanced system, Ig = ly = Ig =1,, and these three phase currents will be

displaced from each other by an angle 120°.



Fig. 2.12 Delta connection

Fig. 2.13 Phasor diagram for computation of line current in delta connection

Current in line 1 is given by 11 = Ir-Ig
Current in line 2 is given by I2 = ly-Ir
Current in line 3 is given by I3 = Ig-lvy
From the phasor diagram shown in fig. 2.13, the line current can be computed as follows.

. . 3
sy =1, =I5 =Linecurrent, I, =2x1,, xCos (60 /2)= 2x1 o, x%:ﬁlph
- Indeltaconnection, I, =~/31,
Alternatively, the line current can be computed analytically as follows.

Ig =15, 20" =15,(Cos0” + jSin0") =15, + jO

Iy =154 -120° = 1,[Cos(-120") + jSin(-120")] = -0.51 ,;, — j0.8661

Ig =1,,£120° =1, [Cos(120°) + jSin(120°)] = 0.5 , + jO.8661

.. Thethreelinecurrentsare :

I =1g —lg =1y +jO+0.51,, —j0.8661, =1,,(1.5- jO.866) =3l oh < —30°

Iy =1y —Ig ==0.51 5, — jO.8661y, — Iy — j0 =1 5 (~1.5— j0.866) = v/31 ;£ —150°

I3 =1g —ly =-0.5l, + jO.8661 5, +0.51 , + j0.8661 , =1, (0+ j1.732) = NE] oh 290



. Indeltaconnection, | = V3l ph

e From fig. 2.12, it is clear that the same voltage appears across the phase as well as in
between the corresponding pair of line conductors which means line voltage V| and

phase voltage V, are same in delta connection.

. Indeltaconnection,V| =V,

The following points may be noted.

(iv)  Line currents are 120° apart.
(v) Line currents are 30° behind their respective phase currents.
(vi)  Angle between the line voltage and corresponding line current is (30+¢@) for
lagging pf and (30 - @) for leading pf.
Power:
Power / Phase, S j, =Vl = (Vpn 20°)(1 pn £+ %) =V | gn £ £6° =V 1, (Cosg® + jSing®)
= Powel’/ Phase, Sph =Vph I phé + ¢0 :Vph I phCOS¢O + ijh I phSin¢O = P phijQ ph
Apparent Power / Phase =S =Vl
Active Power / Phase = P =V 1 ;Cosg®
Reactive Power / Phase =Q =1V, phSin¢° (‘+'sign for lagging pf and '-'sign for leading pf)
Total Power = S =3V 1 " =3Vl pn £ 6% =3V 11 Cosg° + 3V 51 Sing® =P £ jQ

I
Total Apparent Power =S =3V ;1 ,, =3V, x L= \/§V,_ I

J3

. |
Total Active Power = P =3V 1 ;,Cos¢° =3V, x —=x Cosg® =/3V, I, Cosg®

Ne

Total Reactive Power = Q = +3V ;1 ;;,Sing® = 3V x I—J% x Sing®
= J_r\/§VLILSin¢° ('+'sign for lagging pf and '-'sign for leading pf)

.. For both star and delta connection :
Sph :Vphlph4i¢o :Vph I phCOS¢0 e j\/phlph¢O =P phijQ ph
Apparent Power / Phase =S =V, 1,
Active Power / Phase = P =V, 1 ;,Cosg°
Reactive Power / Phase =Q = ivphlphSin¢° ('+'sign for lagging pf and '-'sign for leading pf)
Total Power = S =3V ;1 ph* =3Vl pn L £ ¢° = 3Vl phCos¢° + 3V phSin¢° =P+ jQ
Total Apparent Power =S =3V, 1, = J§VL I
Total Active Power = P =3V, 1 ;,Cos¢° =+/3V, I Cosg®
Total Reactive Power = Q = 3V, I 5, Sing°
= J_r\/§V,_I,_Sin¢° (‘+'sign for lagging pf and '-'sign for leading pf)

Problem:

Given a balanced 3-phase, 3-wire system with star connected load for which line voltage is
230 V and impedance of each phase is(6 + j8) Q. Find the followings

0] line current,

(i) active, reactive and apparent power of each phase,
(iif)  Total active, reactive and apparent power of the load.



Also draw the phasor diagram showing the phase voltages and line currents.
Solution:

R >
T Ven
VL =230V
RN
|
B >
v
(@) (b)
V| =230V
3B

Zop = 6+ j8=10,53.13"

Let, Vrn :Vph 0" =13320° =133+ jO

VN =V -120° =133/ -120° = -66.5— j115
and, Vgy :vph4 +120° =133/ +120° = -66.5+ j115
Now,

I YRy 13820 454 5393

Zon 1045313
<V 1332120
Zon 105313
Vgny 1332 +120°
Zoh  10/53.13°

Sinceitisastar connected load I, Iy and 15 arethe phase currents as well asline currents.
Power absorbed by phase Ris givenby,

Sg =V | R* = (133£07)(13.3£+53.13") =1769.,53.13 =1061 + j1415
Power absorbed by phaseY is givenby,

Sy =Vyn Iy = (1332£-120°)(13.3£ +173.13°) =1769./53.13 =1061 + j1415
Power absorbed by phase Bis givenby,

Sg =Vpy Ig = (133£+120°)(13.3£ —66.87°) =1769./53.13 =1061+ j1415
It is seenthat, ineach phasethe power absorbed is same whichisobvious asitis abalanced load

=13.3£-173.1%°

lg = =13.3/66.87°

Apparent power / phase, S, =1769VA
Active power / phase, Py, =1061W
Reactive power / phase,Q,, =1415VAR (lagging)

Alternatively,
Apparent power / phase, S, =Vl 5 =133x13.3=1769VA, Or

Spn =l pn°Z pp =13.3% x10 =1769VA



Active power / phase, Py, =V 155, Cos@ =133x13.3x C0s53.13" =1061W, Or
Pon = I pn”Rpn =13.3% x6 =1061W

Reactive power / phase,Qp, =V | ppSin@=133x13.3x Sin53.13" =1415VAR (lagging), Or
Qpn = I pn” X =13.3% x8 =1415VAR (lagging)

Total power canbe obtained by multiplying the per phase power by 3as follows.

Total Apparent power,S =3V, 1 5 =35, =3x1769=5307VA

Total Active power, P =3V, 1 ;,Cos® = 3Py, = 3x1061=3183W

Total Reactive power,Q =3V, 1 5y Sin@ = 3Qy, = 3x1415= 4245VAR (lagging)
Alternatively,

Total Apparent power,S =+/3V, I =+/3x230x13.3 = 5298VA

Total Active power,P = \@VL I Cos@= /3% 230%13.3x C0s53.13° = 3179W

Total Reactive power,Q = J§VL [ Sin® = J3x230%13.3x Sin53.13" = 4239VAR (lagging)

Problem:
A 220 V, 3-phase voltage is applied to a balanced delta connected 3-phase load of phase
impedance (15 + j20) Q. Determine the following:

() Phasor current in each line current,
(i) Active, reactive and apparent power of each phase
(i)  Total Active, reactive and apparent power of the load.
Also draw the phasor diagram showing the line voltages and line currents..
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Solution:

Zy, =15+ j20 =25/53.13

Let, the phasevoltage,Vgy =V, £0° =220£0" =220 + jO

~. Phasevoltage,Vyg =V, £ -120" = 2204 -120" = -110- j190.5
and, Phasevoltage,Vgg =V, £ +120° =220/ +120° = -110 + j190.5



Now,thethree phase currents are :

lpy = RY - 2020 _gg, 5313 =528- j7.04

Zon 255313

Iy = ¥8 22027120 _ g/ 17313 — 874 j1.05
z

oh  25/53.13°

lgn = BR 22024120 g4 o6g7° —3454 j8.1

Zoh 2545313
Iz, ly and Iz arethe phasecurrents.
Thelinecurrents are calculated as follows.
I, =lgy —lggr =5.28—j7.04-3.45—- j8.1=1.83- j15.14 =15.25/-83.11
I, =lyg —lgy =—8.74—- j1.05-5.28 + j7.04 =-14.02 + j6 =15.25,156.83
I3 =1gg —lyg =345+ j8.1+8.74+ j1.05=12.2 + j9.15=15.25/36.87
Power absorbed by phase Ris givenby,
Sgr =VRy IRY* =(220£07)(8.8£53.13") =1936£53.13 =1162 + j1549
Power absorbed by phaseY is givenby,
Sy =Wsg IYB* =(220£-120)(8.8£+173.13") =1936.£53.13 =1162 + j1549
Power absorbed by phase Bis given by,

Sg =Vpgrl BR* =(220£+120°)(8.8£ —66.87°) =1936.,53.13 =1162 + j1549
It is seenthat,ineach phasethe power absorbed is same whichisobvious asitisabalanced load.

Apparent power / phase, S, =1936VA
Active power / phase, Py, =1162W
Reactive power / phase,Q,, =1549VAR (lagging)

Alternatively,
Apparent power / phase, Sy, =V 1y, =220x8.8 =1936VA, Or

Spn =l pn°Z pp =8.8% x 25 =1936VA
Active power / phase, Py, =V 1 ,Cos@ = 220 x 8.8 x C0s53.13" =1162W, Or
Py = 1 on”Rpp = 8.8% x15 = 1162W
Reactive power / phase, Qg =Vl 55 Sin@ = 220x8.8x Sin53.13" = 1549VAR (lagging), Or
Qpn = I pn” X = 8.8% x 20 = 1549VAR (lagging)

Total power canbe obtained by multiplying the per phase power by 3as follows.

Total Apparent power, S =3Vl 5 =35, =3x1936=5808VA

Total Active power, P =3V 1 ;,Cos® =3P, =3x1162=3486W

Total Reactive power,Q =3V | ;,Sin@ =3Q ;, =3x1549=4647VAR (lagging)
Alternatively,

Total Apparent power,S =~/3V| I, =+/3x220x15.25 = 5811VA

Total Active power,P = \@VL I Cos® = /3% 220x15.25x C0s53.13° = 3486W

Total Reactive power,Q = \/§V|_ [, Sin® = J3x220x15.25% Sin53.13° = 4649VAR (lagging)

Measurement of Power in 3-phase System:
In a three-phase system, power can be measured by any of the following methods.

0] Three wattmeter method:
¢ In this method, three wattmeters are used to measure the total power and one wattmeter
is connected in each phase as shown in fig. 2.14.



The current coil of each wattmeter carries the phase current and the pressure coil
measures the phase voltage of each phase. Hence, each wattmeter measures the power
of the corresponding phase in which it is connected.

The algebraic sum of all the wattmeters gives the total power consumed by the 3-phase
load.

The disadvantage of this method is that it may not be always possible to break into the
phases in case of a delta connection and similarly in case of a star connection, it’s
difficult to find the neutral point for connections of wattmeters.

(@) (b)

Fig. 2.14 Connection diagram for measurement of power by three wattmeter method for (a)

(i)

delta connected load and (b) star connected load.

Two wattmeter method:
This method can be applied for measurement of power for both balanced and
unbalanced load. For unbalanced load, it must be a three-phase three wire system i.e.
in case of star connected load, the neutral conductor must be absent because the neutral
conductor carries current in unbalanced load.

The connection diagram for measurement of 3-phase power by two wattmeter method
for both the delta connected and star connected load is shown in fig. 2.15.

In this method, the current coils of the two wattmeters are connected in any two line
and the pressure coils of the wattmeters are connected to the third line as shown in the
fig. 2.15.

It can be proved that, the summation of the instantaneous powers indicated by the two
wattmeters gives the total instantaneous powers absorbed by the three-phase load.

(@) (b)

Fig. 2.15 Connection diagram for measurement of power by two wattmeter method for (a)

delta connected load (b) star connected load



A star connected load is considered to do the proof and the proof is valid for delta
connection also because a delta connected load can always be replaced by an equivalent
star connected load.

The wattmeter reading is positive if the direction of both the current and voltage is taken
along the same directions. The assumed positive directions of instantaneous currents in
different phases are already shown in fig. 2.15 (b). Hence, the voltage measured by the
pressure coil of Wi will bevgy —Vvgy and notvgy —vgy - Similarly, the voltage

measured by the pressure coil of W2 will be vy —vgy and notvgy — vy -
Total instantaneous power of the star connected load = vgyig +Vyyly +Vgyig

Referring to fig. 2.15 (b),

Instantaneous current throughthe current coil of W, =ix
Instantaneous voltge acrossthe pressure coil of W, = (Vgy — Vg )
. Instantaneous power measured byW,, P, = (Vgy —Vgy iR
Instantaneous current throughthe current coil of W, =1y
Instantaneous voltge acrossthe pressure coil of W, = (v —Vgy )
. Instantaneous power measured byW,, P, = (W — Vg )iy
Hence the sumof theinstantaneous power measured byW, andW, =R, + P,
= (Ven —Ven iR + (W —Ven )iy
=VenIR ~VBNIR T VNl — VBN Iy
=VrnIR +Vynly =V (IR +iy)
Applying KCLatat N,ig +iy +ig =0
:> IR + IY = _IB
P+ Py =Veyir + Wy ly —Vey (iR +iy) = Vryir +Vyniy +Veyig (PUttingis +iy = —ig)
=Total instantaneous power (Proved)

The above proof holds good for both balanced and unbalanced load. But for unbalanced
load, it must have no neutral connection, otherwise, KCL at point N will give
Iy +ig +iy +ig =0.

The wattmeter readings give the average power in actual practice. The above proof is
done by taking instantaneous power into consideration but it also holds true for average
power since the average power is obtained by integrating the instantaneous power over
a complete cycle and dividing it by the time base.

(iii)  One wattmeter method:

This method can be used to measure power of only balanced load. Instead of three
wattmeters, only one wattmeter can be used in any phase of the fig. 2.14. The wattmeter
gives the power of one phase. Hence, the total power can be obtained by multiplying
three with the wattmeter reading.

Power factor measurement by two wattmeter method for balanced load:

(i)

Lagging power factor
For lagging pf, the phasor diagram for a balanced star connected load is shown in fig.
2.16.
Let, Vgrn - VN »Ven Pethe RMS valuesof phasevoltages and

Ir, ly, g bethe RMS valuesof phasecurrents.

Current throughthe current coil of W; = I

Voltge acrossthe pressure coil of Wy —VRB =(Vrn -VeN

Fromthe phasor diagram, Phase angle betweenVpgg and IR is(30-9)
.. Reading of W; ,P, =VgglzCo0s(30 - ®)



Ven Vn
Fig. 2.16 Phasor diagram for balanced star connected load

Currentthroughthe current coil of W, = Iy
Voltge acrossthe pressure coil of W, =Vyg = (Vyy -Vay )
Fromthe phasor diagram, Phase angle betweenVyg and Iy is(30 + @)
.. Reading of W, ,P, =Vyg Iy Cos(30+ @)
Sinceitisabalanced load,Vgg =Vyg =V,
and Iz = Iy =1 (Instar connection, phase currents and line currents are same)
Hence, the sumof the reading of W; andW, = P, + P,
- VL | LCOS(3O - @) + VLILCOS(30 + @)
=2V I Cos30Cos®
=+/3V I Cos®
= Total power absorbed by the load

Hence,the sumof thetwo wattmeter readings givesthetotal power absorbed by thethree phaseload
P, +P, =+/3V, 1, Cos®

P -P, =V, 1,.Cos(30-®)-V, I, Cos(30+®)= 2V, I Sin30Sin®d

PR-P, 1

—tan®
P+P 3
P -P
tand =431 2
P, +P,

@ = tan™ —\/§(P1 )
(FL+P)

o= 3PP _ J3(1-Py 1 Py)
P+P 1+R /1 R)
Taking P, / P, = r,we have,

3(1-r)?
(1+71)?

— tan’d =



3(1-1)?

= Sec’d- 1= :
a+r)

= Sec’d =]+

3+3r2 -6r _ A+4r2 - 4r

1+r2+2r
1 4+4r° -4r

Cos?d  [+12+2r

2
+r°+
= C052¢ = 1r—22r
4-1l-_|4_1r -4r
.. Cosd = '

2N1+r% -y

14+r%+2r

The curve plotted between r and Cos@® is known as watt-ratio curve and is shown in fig. 2.17.

Fig. 2.17 Watt-ratio curve
Variations in wattmeter reading:

e The variations in wattmeter reading for various values of @ is shown in the following

table.
D=0 @ =60° @ = 90°
P, | positive positive positive
P, | positive 0 negative

N

Pl = P2 =VL I LCOS30 = 7VL I L

NE

P =V 1,Cos30=""V, I,

P1=V,_I,_Sin30=%vl_l,_

P, =-V,_I,_Sin30=-%V,_I,_

P and P,

are equal in magnitude but
of opposite sign
P+P,=0

e For 60°<®<90°,P, is positive but P,is negative. In this condition the second
wattmeter W, will read down scale. Hence, to obtain the reading, either the pressure




coil or current coil of the wattmeter is reversed. But the reading so obtained after
reversing the pressure coil or current coil of the wattmeter is taken as negative.

Notes:
In case of lagging power factor, the value of higher reading wattmeter is considered as
P, and the value of lower reading wattmeter is considered as P,. P is always positive
whereas P, may be negative.

(i)  Leading power factor:

e The derivation for P andP, can also be done for leading pf by drawing the phasor
diagram for leading pf.

e But, for leading pf, the angle®@ is negative. Hence, putting
—@in placeof @,thereadingsof thetwo wattmeters canbe obtained as follows.

P, =V I Cos[30+(-®)] =V I Cos(30-D)
Hence, for leading power factors, the wattmeter readings are interchanged.
Here,P, - P, =V I Sin®and P, + P, = \[3V, I, Cos®

Hence, R-h_ itanqﬁ

PR e
tand =321 - _J3 1"
P,+R P+P,

Notes:

In case of leading power factor, the value of higher reading wattmeter is considered as
P, and the value of lower reading wattmeter is considered as P, .P,is always positive
whereas P, may be negative.
Problem:
The input power to a three-phase induction motor was measured by the two-wattmeter
method. The readings were 5.2 KW and -1.7 KW, and the line voltage was 400 V. Calculate:
(i)  The total active power,
(i)  The power factor,
(iii)  The line current.

Solution:

(a)Total active power,P =P, + P, =5.2+(-1.7) = 3.5 KW = 3500W
P -P
(b)tan® = /3 L2
P +P,
= tan® = \/gﬂ
52+(-1.7)
= ®=73.67°

.. Power factor,Cos® = Cos73.67° =0.281

(©)P =~/3V 1, Cosd
= 3500 =+/3x400x 1 x0.281
=1, =18A



Problem:

Phase voltage and current of a star-connected inductive load is 150 V and 25 A
respectively. Load power factor is 0.707 (lagging). Find the readings of the wattmeters if
power is measured by two wattmeter method.

Solution:

@V, :\/§Vph =/3x150 = 260V, 1, = I'oh = 25A

P =3V, 1 Cos® = /3 x260x 25x0.707 = 7960 W’
Alternatively, P =3V 1 j,Cos® = 3x 150 x 25x0.707 = 7954 W
Total active power,P =P, + P, = 7960

(b)tand = 3 1 T2
P+P,

P,-P
—tand=+3-1 2

\/_ 7960
Cos® =0.707

= @ =45
P -P
tan45’ =3 -1 2
\/_ 7960
— P, - P, = 4596W
()P, +P, = 7960 and P, - P, = 4596W
— P, = 6278W and P, =1682wW

Problem:

Two wattmeters are used to measure the power input and the power factor of an over-
excited synchronous motor. If the readings of the meters are -2KW and 7KW respectively,
calculate the power input and power factor of the motor.

Solution:
Powerinput,P =P, + P, = (7) +(-2) = 5 KW = 5000W
tan® = J}M

P, +P

= tand = J§77'—('22):» & =T7221

.. Power factor,Cos® = Cos72.21° = 0.305(leading)

Problem:
The power in a 3-phase circuit is measured by two wattmeters. If the total power is 100
KW and power factor is 0.66 leading, then determine the reading of each wattmeter.
Solution:
Power input, P =100 KW
P, + R, =100 (1)
Power factor,Cos® = 0.66 (leading)
=>b=487°
tandg.7° = 32 "L
P, +P,

P, -P
—=113=4321
V3 100



=P

-P, =65.71 (2)

. From (1) and (2),

2P, =165.71

= P, =82.85KW

P, =100-82.85=17.14 KW

Delta/Star and Star/Delta Conversion:

(i)

If the two systems are to be equivalent, then the impedances between corresponding
pairs of terminals of the two systems mut be the same.

Also, if the two systems are equivalent, the corresponding line voltages and line
currents in the two systems remain same.

Let us consider the unbalanced delta and star connected load as shown in fig.2.18 for
conversion of delta to star and vice-versa.

(a) (b)

Fig. 2.18 Delta/Star and Star/Delta Conversion (a) Delta connected load and (b) Star

connected load

Delta/Star Conversion:
For star connected load, the equivalent impedance between terminals 1 and 2 is Z; + Z,
For delta connected load, let the equivalent impedance between terminals 1 and 2 is Z
and the value of this equivalent impedance can be obtained as follows.
1 1 1
== +
Z L1y Lyp+ly

7~ Z42(Zo3tZ5)

Zip+Zy3+ 23

Hence, for equivalency of the two systems, the equivalent impedance between terminals
1 and 2 for both the systems must be equal i.e.

Z,+2,= Z1p(Zp3 +231) 1)
Zip+ZLp+1y

Similarly, considering terminals 2 and 3 for equivalency, the following equation is

obtained.

Z,+Z,= Z53(Z31 +Z15) @)
Zyp+Zy3+Z1g




e Again, considering terminals 3 and 1 for equivalency, the following equation is
obtained.

2442, = Z31(Z1p +Z3) 3)
Zip+Zy+lz
e Subtracting equation (2) from equation (1) and adding the result to equation (3) i.e.
[{equation (1)— equation (2)}+equation (3)], gives the value of Z; as follows.
_ 212203+ 219231 — L9331 — Z1pZ oz + L3121 + Z33l3
Zip+Zyz+23

27,

Z12231

Zig+Zyz+23 _ _
_ Product of impedances connected toterminallof delta connection

Total of impedances of deltaconnection
e Similarly, [{equation (2)— equation (3)}+equation (1)], gives the value of Z; as
follows.

= 222

:le

(4)

_ ZaaZa1+ 219203~ Zanlap —Zo3lay + 219203+ 21923
Zip+ L+l

Z23212 (5)
Zig+Zy3+23 _ ,
_ Product of impedances connected toterminal2 of deltaconnection
- Sumof impedances of deltaconnection
e Again, [{equation (3)— equation (1)}+equation (2)], gives the value of Z3 as
follows.
27, - Z31Z1p + 293231 — 219293 — 231210 + L3231 + 212253
Zig+Zy3+13

:ZZZ

25123 (6)
Zig+Zyz+23 _ _
_ Product of impedances connected toterminal3of deltaconnection
Sumof impedances of deltaconnection

From the above, the conversion for balanced load can be found as follows,

YA . .
Zy :?A, Where, Z, and Z, are the load in each phase of star and delta connection

respectively.
e Note: In the above formulas, all impedances are in complex forms.

(i)  Star/Delta Conversion:
Rearranging equation (4), we have,
_ L1231

Zyp + 23+ 13

1

= ZypZ3y = 2y (215 +Zy3 +Z31) (7)



Rearrangingequation (5) we have,
7 Ly3lyp
, =
Zyp+Zp3+213
= Zpglip = Ly(Zyp + Zy3 +Z3) 8)
Rearranging equation (6), we have,
Z31Z53
Zyp+ 23+ 13
= Z312p3 = Z3(Z1p + 253 + Z31) (9)
equation (7)/equation (8) gives:
Z Z
817 (10)
Ly L _ _
equation (8)/equation (9) gives:
Z Z
f12 =2 (11)
Ly 243 _ _
equation (9)/equation (7) gives:
Z Z
Z28 _ 33 (12)
Zi, Iy
Equation(7)is
Z19Z31 =21(Zyy +Zp3 +Z3;) ) ) )
Putting thevaluesof Z,, and Z,; fromequation(11) and equation(10) respectively,
Z, Z, Z,
—E5XZag X Loy =2 (X2 +—=XZay +7Z
7, < Furla 1(23 ntz x4 31)
Z,Z
2
237y 212, +2,23+257
Z,

:>Z3:

Equation(7)is

219231 =2y(Z1p +Zp3 +Z3) _ _ ,

Putting thevaluesof Z5; and Z;, fromequation(10)and equation(12) respectively,

Zy 1 1 Zy

—=XZoga X —=XZoa =21 (=—XZog +Zyg +——%XZ

Z, 23 Z, 23 1(Z3 23 T 423 Z, 23)

ZyZ3
1

Lyly L1ly+Zy7l3+ 1237

4 Z

Equation(7)is
L1231 =2y(Z1p +Zp3 +Z3) ) . .
Putting thevaluesof Z,5 and Z5; fromequation(12) and equation(11) respectively,

Z Z Z
Zyy XZ—SXZQ =2,(Zy, +Z—3><212 +Z—3><212)

2 2 7 1 2
=2,="224+7,+7,
3
2,27, +2,+ 0% Do+ Tols+ Ik
Z3 Z3
Hence,

Z3 Z3



Loly Z1Zy+Zy73+ 2372
Zyy = Z 47 4+ 2258 - G122 T L2083 T Lt

4 4
VAVARRWAVAS WAV VA

Zgy =2, +2,+ 35 Af2 T L2l T o3t
Z3 Z,

From the above, the conversion for balanced load can be found as follows,

Z, =3Zy Where,Z,and Zy are the load in each phase of delta and star connection
respectively.

Note: In the above formulas, all impedances are in complex forms.

e Hence, a star connected system can be replaced by an equivalent delta connected system
and vice versa using the conversion formula. The corresponding line voltages and line
currents in the two equivalent system remain same.

Problem:
An  unbalanced  star-connected load has  branch  impedances  of

Z,=104£30°,Z, =10£—-45",Z; = 20£60°" and is connected across a balanced 3-phase, 3-wire

supply of 200 V. Determine the branch impedances of equivalent delta-connected load using
Y/A conversion method. Also determine the line currents and voltages across each impedance
of star-connected load using Y/A conversion method.
Solution:

Using Y/A conversion, the impedances of each branch of A connected load are found
as follows.

2,7, +ZyZ5 + Z3Z; = (10.£30°)(10£ — 45°) + (10.£ — 45°)(20.£60°) + (20.£60°)(10.£30°)
= lez + ZZ 23 + Zszl = (1004 —150) + (2004150) + (2004900)
= lez + 2223 + Zszl = 290 + J226 = 3684380

_Z1Z,+Z,Z3+257;  368.38°

2, = 184/ -22" =17 j7
Zs (20/60°)
2,2, + 2,25+ 257 : .
2,y = L2t 2alatlaty 38238 o640 5 364 g5
2 (10430°)
2,2, +2,25+ 257 : .
Zq == =2 T L2l L3a 3684380 =36.8/83 =45+ j36.5
Z, 10/ - 45

Let,Vry ,Vyg and Vggarethethreelinevoltages of Aconnected load.
For equivalency, theline voltage apearing inY connection will also appear as line voltages
in A connection.

In A connection, linevoltages and phasevoltages are same and therefore,
Vgy ,Vyg and Vgrarealsothethree phase voltages of Aconnected load.
Inviewof theabove fact,thethree phasevoltages of A connected load canbe wriitenas follows.

Vey =Vpn£0° =200£0",Vyg =V, £ -120" = 200£ -120° and Vgg =V, £120° = 200120
Nowthe phase currents of Aconnections are determined as follows.

vV Vv ’ i
Ry _Vey 20020 44487 000 (104 ja)A
ZRY le 1844 - 220

IRY=



Is T Zer=Z I
> 1 BR 3 RY —
R V= V=220V 'sr dr=Luz
Zr=2, / I
YB

<—
V. = 200V _ ]
ZB:Z3 Zy—22 L3 3| B L 2 Y

” Zyg=L

IE B 3 2

. >

Iy

(a) Star connection (b) Delta Connection

Vyg Vg 200/ —-120°

Lyg Ly - 36.8.8°
Ver _ Ver _ 200£120°
Zgr 231 36.8483°
Thethreelinecurrents 11, I, and 15 in 4 connection are found as follows.

Applying KCL at pointlof 4connection,

|1+ IBR _IRY =0

= Iy =1lgy —lggr =10+ j4)-(4.33+ j3.27) =5.67 + j0.73=5.72,7.33"
Applying KCL at point2 of 4connection,

|2+ IRY - IYB =0

=1, =g - lgy =(-3.34—j4.28) - (10 + j4) =-13.34— j8.28=15.7/-148.2°
Applying KCL at point3of Aconnection,

I3+ lyg —lgr =0
= l3=1lgg — lyg =(4.33+ j3.27) - (-3.34 - j4.28) = 7.67 + j7.55=10.76 £44.54
Thethreelinecurrents 11, I, and |5 in 4 connection are also thethreeline currents inY connection because

both the systems are equivalent.

But,inY connectionlinecurrentsand phase currents are same.

Hence, 1, 1, and |5 arethethree phasecurrentsinR,Y and B phaseof Y connection.

1y =1g, I, =1y and I3 = 15 inY connected load.

Phasevoltagesof Y connectionare found as follows.

Vpn = 1rZg =112 1=(5.72£7.33°)(10£30°) =57.2£37.33" = 45.48 + j34.68

Vyn =Iv2Zy = 1,2, =(15.7£-148.2")(10£ - 45°) =157 £ -193.2° = -152.85+ j35.85

Vgn = 1gZg = 1325 =(10.76.£44.54)(20£60") = 215.2./104.54° = -54 + j208.3

The correctness of the above results canbe checked by calculating the linevoltagesinY connection
as follows :

Voltage betweenlineland line2,Vgy =Vgy —Vyn = (45.48 + j34.68) — (—152.85 + j35.85)
=198.33- j1.17 = 200£0°

Voltagebetweenline2and line3,Vyg =Vyn —Ven = (—152.85 + j35.85) — (-54 + j208.3)
=-98.85— j172.45 =200« —-120°

Voltagebetweenline3and linel,Vgg =Vgn —Vrn = (-54 + j208.3) — (45.48 + j34.68)
=-99.48 + j173.62 = 200,120°

Itis found that,the supply voltages are balanced with a magnitude of 200 V as mentioned inthe question.
Hence, the solutionis correct.

lyg = =5.43/ 128" = (-3.34— j4.28) A

lgg = =5.43/37° = (4.33+ j3.27) A
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