MODULE -1

Data:

Data are simply collection of facts and figures. Data are values or set of values. A data
item refers to a single unit of values. Data items that are divided into sub items are
group items those that are not are called elementary items. For example, a student's
name may be divided into three sub items - [first name, middle name and last name)
but the ID of a student would normally be treated as a single item.

Student

1D Name Addgess Age Gender

First Middle Last

Street Area

In the above example (ID, Age, Gender, First, Middie, Last, Street Area) are
elementary data items, whereas (Name, Address) are group data items.

Abstract Data Type (ADT)

Abstract data types or ADTS are a mathematical specification of a set of data and the
set of operations that can be performed on the data. Data Structure.

Data Structure-

Data Structure is a way of collecting and organizing data in such a way that we can
perform operations on these data in an effective way. Data Structures is about
rendering data elements in terms of some relationship, for better organization and
storage.

Scanned with CamScanner

gnlrwoluc}iod bo Da/la'\g}rukd,—uru; - __:___
- dn ompuiot Suentl A ol akax £4@du’rc{xﬁ_j’ is.im.
| Part i cdast wma od &%wlna auw‘ ONZ?,_,?JMLJ |
| in o Compulde Ao Mk b CMEE |
e:liiuU&b&
| > da dake Shaudune iy on Wﬂamu\): 0] dada
20 o lC,DmPuXU‘L_'é muﬂd“-a orC wen oQJ%\&-lﬂrux_ge, -
v An aoenple o} Sevuta] tommon Joke. Mrow etk
drte arutand. Diwad Lids, quewts SHatil
bin s ond hosh tabled. |
> Oefloant kind3 of Jode Q4L

to oliffoant Kinds of applicotions
uﬁw& gpe i alizad o aperfic +ams.

; -
5 Fore esomple B- Treetd :;"L P;:fd m,;w,
3 i L 40 0 &J““‘E > .
cutked dor tmp “\Wémp‘iwws el WA

L bt tabied o RS wp cdanbitiens .
Deda Struthureh o uhesl Lo almotk SV
Py PN 2 froachurtt & oo ﬁww%d ON?
7 SPQI:)'LC_ QQQ!MM’% giaum&hmb ,

é«\aru»oUU‘*H D_'{ moJ\J& QJV\V\J: O,R W@mom}i
ona g iih ‘o

AMMJMF
Mw\o? Qo oI

bOl/\.xLL (_,mmPé\JUL

maXe Po AL
M ot . ‘IU-A
?j\.\uur\llc inolen™ i

-

—

Scanned with CamScanner

Scanned with CamScanner

Basic types of Data Structures

As we have discussed above, anything that can store data can be called as a data
structure, hence Integer, Float, Boolean, Char etc, all are data structures. They are
known as Primitive Data Structures.

Then we also have some complex Data Structures, which are used to store large and
connected data. Some example of Abstract Data Structure are :

Linked List
Tree
Graph

Stack, Queue ete.

All these data structures allow us to perform different operations on data. We select
these data structures based on which type of operation is required. We will look into
these data structures in more details in our later lessons.

Data Structures
|

I |
Built-in Data User Defined
Structures Data Structures

' |

| | J | 1
Integer Float Character | | Pointer Arrays Lists Fies

Linear Lists Non-Linear Lists

Stacks| |Queues Trees | [Graphs

Scanned with CamScanner

The data structures can also be classified on the basis of the following
characteristics:

Characterstic Description

Linear In Linear data structures,the data items are arranged in a linear sequence.
Example: Array

Non-Linear In Non-Linear data structures,the data items are not in sequence.
Example: Tree, Graph

Homogeneous In homogeneous data structures,all the elements are of same type.
Example: Array

Non- In Non-Homogeneous data structure, the elements may or may not be of the
Homogeneous same type. Example: Structures

Static Static data structures are those whose sizes and structures associated
memory locations are fixed, at compile time. Example: Array

Dynamic Dynamic structures are those which expands or shrinks depending upon the
program need and its execution. Also, their associated memory locations
changes. Example: Linked List created using pointers

Scanned with CamScanner

> Some_ darcmad oLodion bt Muw e
1% ponpa bine. dode Sttt
uj:}ﬂcajm"hm}) M ‘HA_Q K% nae”\zw*‘a, ’Qﬁdo

n Sodbwnrie. clmgn .

S promilive dake ¢ huschunak o +th ‘ i
m +«jws wwchm MFP ?

Soma 'baﬁnt date MPM e il OL@LAJJUL AN
UM&, P{Uwh\!l |

~ Non Primitive olaes N
shichuuk wiich g, sk

3 LLLOM’!
2 i ol gud/\M‘“- AWM nu

poed Livk , Shacksp , baed ol P

Ezﬁﬁfﬂ%ﬂ

mem Dm O Prnitve dode R
um | I |
oy i ! ruuuj ‘ ¢ e
3“""‘} g Uned b Tl
. olsubl > i 2 ey
Y.

Scanned with CamScanner

Scanned with CamScanner

a1l

- A

= gﬂ U;J\,Q 0-’{; non- leneurt

7 Non Primitive duda. At churcel Loun Mut lo¢

AFe_aI ‘!fH—o 4wo u«“ﬂ-aon.xiéo
IQOr\ UJM_OJ‘(.. oficu’rek Slrn_udu-r@

Jote Shockoru., tak mauﬂ*ajM o Jangort
, 1k A .

L FONARIP betwsen i plamands

L M oUU"‘L S—}M&C}LLU'UL

-7 +ore g Pl on o.ruuua, ool \‘WL SINT.S M”"‘MP

AMM.
w18 alemanks s Uesse ol .-

daka Sroucho they madododn

U/uc,aj relakondiip b iAwEY i W

ﬁvﬁ in con seahive Mu/wrba(, (,D(I,tbfmm‘

Scanned with CamScanner

Scanned with CamScanner

A Shacn s o U

g A g
s SWM L.ﬂ

i,

Scanned with CamScanner -

Scanned with CamScanner

Oruphe_
Oraph 18 o o e praient od-a Hhodk ek

relakion &lap bodween. Palr of glomerds not
meuMWbe MULQJ'LCJ/\-‘UX m AL,

' A2~
opowakions on Date Sl)
'r:n_ doddercnd o partati o) Had- con oo pm*ﬁorwu{)

NTER
s Han vortowh duke Aruchorth

1, Tt
2 s gmc@v‘wa,
3. 1N SMM(']L
4. Dm'HMéY
S - Scmiﬂ'w?f
6. Mv.rc,a‘w

il Daka Struthwle

n ba
M Prisdems Can 0

o Shorviesk path b DrjRgires
pruojﬂ.d— SC/{’\LOQ’“‘QJV\%

Scanned with CamScanner

Scanned with CamScanner

4,

_gg,ﬂ,/ﬂ’i%c’“ Re
T oz, :‘yPJLCXLC

Scanned with CamScanner -

Scanned with CamScanner

. BN
% U‘i Lﬂ
U VNI AR 5

o“wa,m u@ﬂwﬂ o# o PM}‘W’M

- _ =6 \Q ('_,MU—OQ &mfﬂu |
olasnend: .m ‘uw% r'yLOJ’LLﬂM”‘a- +ech£a:,‘{{&._.

RPTY 8,0 &WL

M) = S
SURE
wi2) -9
w[sz) = X
wfuj 2 b

f/o,\J a< Bmmj c%mck

1
i r
|
o
10
i
!¢
iy |
]
i 471
pio,
4

.T T L o B |
Scanned with CamScanner

Scanned with CamScanner

’[m et o ‘m OJ'U’LOﬂ\;,_

' R, X
QHSM bﬁ OPMOQ i.S +0 v w Ol\f.- OT'L mo X
| dewanks ke o0 b Mmm
15 Band on Mg qui % sony i ndask of ad
edc P louamswﬂ, w? oft ‘Wif 4

SEIIAEL i\}am i
: 7,,!% | @ lﬂSQJ‘L/E | |

N II. J;_ MW mu_jﬂ UU-‘E’”) 4
] ot Mook Loe =10 Ma ot Lkl W U

alm
e =Y L= B8 iM

ilbem=5

} Y ':e.j-'
i

& Wa ‘-I'\I‘-{up- sl _

I SR PYRESNRT PR R PR, / | -
em = whioh Aomendk we

SRS

Scanned with CamScanner '

Scanned with CamScanner

ToDddeken - s
ﬁémw Yo movi M AT

D‘M’“ od nll ol 0
,; ‘ w T
0 a..f\ z L i

\

e = 0 43’ & S r/"\q r/—"\S J/"\'.

= S T R o B N & |
A V] I'.I!""-,"’I

g L
i . - & - L ' i o I 2 3 i '_'--\ .‘
e d, :) ‘ ’ .]-.’;-'___-. 's"F.j.,:—‘._-__J"
b oot wdcbaiedT Cort 5 el sield AddeE

Scanned with CamScanner |

Scanned with CamScanner

DR P

Algorithm

An algorithm is a finite set of instructions or logic, written in order, to accomplish a
certain predefined task. Algorithm is not the complete code or program, it is just the
core logic(solution) of a problem, which can be expressed either as an informal high
level description as pseudo code or using a flowchart.

Every Algorithm must satisfy the following properties:

Input- There should be 0 or more inputs supplied externally to the algorithm.
Output- There should be at least 1 output obtained.

Definiteness- Every step of the algorithm should be clear and well defined.
Finiteness- The algorithm should have finite number of steps.
Correctness- Every step of the algorithm must generate a correct output.

An algorithm is said to be efficient and fast, if it takes less time to execute and
consumes less memory space. The performance of an algorithm is measured on the
basis of following properties :

Time Complexity
Space Complexity

Space Complexity

Its the amount of memory space required by the algorithm, during the course of its
execution. Space complexity must be taken seriously for multi-user systems and in
situations where limited memory is available.

An algorithm generally requires space for following components :

Instruction Space: Its the space required to store the executable version of the
program. This space is fixed, but varies depending upon the number of lines of code
in the program.

Data Space: Its the space required to store all the constants and variables(including
temporary variables) value.

Environment Space: Its the space required to store the environment information
needed to resume the suspended function.

Time Complexity

Time Complexity is a way to represent the amount of time required by the program
to run till its completion. It's generally a good practice to try to keep the time
required minimum, so that our algorithm completes it's execution in the minimum
time possible.

Scanned with CamScanner

Asymptotic Notations

When it comes to analysing the complexity of any algorithm in terms of time and
space, we can never provide an exact number to define the time required and the
space required by the algorithm, instead we express it using some standard
notations, also known as Asymptotic Notations.

When we analyse any algorithm, we generally get a formula to represent the amount
of time required for execution or the time required by the computer to run the lines
of code of the algorithm, number of memory accesses, number of comparisons,
temporary variables occupying memory space etc. This formula often contains
unimportant details that don't really tell us anything about the running time.

Let us take an example,

if some algorithm has a time complexity of T(n) = (n2 + 3n + 4), which is a quadratic
equation.

For large values ofn, the3n + 4 part will become insignificant compared to
the n? part.

10000 nh2
8000
6000 /
4000
2000 3n+4
—
0 20 40 60 80 100

n
For n = 1000, n2 will be 1000000 while 3n + 4 will be 3004.

Also, When we compare the execution times of two algorithms the constant
coefficients of higher order terms are also neglected.

An algorithm that takes a time of 200n2 will be faster than some other algorithm that
takes n3 time, for any value of n larger than 200. Since we're only interested in the
asymptotic behavior of the growth of the function, the constant factor can be ignored
too.

Types of Asymptotic Notations

We use three types of asymptotic notations to represent the growth of any algorithm,
as input increases:

1. Big Theta (©)
2, Big Oh(0)
3. Big Omega (Q2)

Scanned with CamScanner

Tight Bounds: Theta

When we say tight bounds, we mean that the time complexity represented by the Big-
©® notation is like the average value or range within which the actual time of
execution of the algorithm will be.

For example, if for some algorithm the time complexity is represented by the
expression 3n2 + 5n, and we use the Big-© notation to represent this, then the time
complexity would be ®(n2), ignoring the constant coefficient and removing the
insignificant part, which is 5n.

Here, in the example above, complexity of ®(n2) means, that the average time for any
input n will remain in between, ki * n? and k2 * n2, where ki, k2 are two constants,
thereby tightly binding the expression representing the growth of the algorithm.

ks flm)

running time

ky - flm)

n

Upper Bounds: Big-O

This notation is known as the upper bound of the algorithm, or a Worst Case of an
algorithm.

It tells us that a certain function will never exceed a specified time for any value of
input n.

The question is why we need this representation when we already have the big-©
notation, which represents the tightly bound running time for any algorithm. Let's
take a small example to understand this.

Consider Linear Search algorithm, in which we traverse an array elements, one by
one to search a given number.

In Worst case, starting from the front of the array, we find the element or number
we are searching for at the end, which will lead to a time complexity of n,
where n represents the number of total elements.

But it can happen that the element that we are searching for is the first element of the
array, in which case the time complexity will be 1.

Now in this case, saying that the big-@ or tight bound time complexity for Linear
search is ©(n), will mean that the time required will always be related to n, as this is
the right way to represent the average time complexity, but when we use the big-O

Scanned with CamScanner

notation, we mean to say that the time complexity is O(n), which means that the time
complexity will never exceed n, defining the upper bound, hence saying that it can be
less than or equal to n, which is the correct representation.

This is the reason, most of the time you will see Big-O notation being used to
represent the time complexity of any algorithm, because it makes more sense.

Lower Bounds: Omega

Big Omega notation is used to define the lower bound of any algorithm or we can
say the best case of any algorithm.

This always indicates the minimum time required for any algorithm for all input
values, therefore the best case of any algorithm.

In simple words, when we represent a time complexity for any algorithm in the form
of big-£2, we mean that the algorithm will take at least this much time to complete its
execution. It can definitely take more time than this too.

Scanned with CamScanner

]

S REETE——

et e e —

'1 .ﬁ— uourd\}c‘ oM~ Pw%m&nu’“ .[hn’] 5
I T ki wm% J;t: uawd’\ v ai?fw |
‘ H. 0\ . |

b '
Y _yg&:j&,/— ’ :
i 0 oA)
"' l SN -UO‘/UCJ"' s o Pmi@muw o&_}dﬂl :"
F mﬁj“mn_ o SPALK w L bw
1 Lo ik

‘ ' i %«2‘10 75
AA mplotic I\U A e |
I' s Oiumth (0) — By O P spg_M -
i 0

‘7/[\8 m?whﬁ no)rﬂjf‘“
oL W b 'U’P‘Iwb s
Wm&hm i

| Al o

‘7Mm34ﬂf’uoi MM

A LA
%DOMA- CoA

AVUTOIR., UW*

‘1‘M PUL :{D I'|L1 (

3)

% Bk LMo In UJL“CJ" we M ik e
mmwm Jore e nput ot 4 ..
OL?(OWH\M J,—MQM Lty Hme oL SP&L’L o f‘-'3

{. Bi%- 193 LIGbeS UDO'FU‘JC ca . SLenario.

tion () 0
A ON’%& N:LMUUMJ b 2 M- ‘\U;M)y)%’\."\ 8 CRNIUD.-

, L Thig Mdabion repredends dwg
3. Toke Notkion (8 = (00 7 Conflaoki s o1 an ol

Scanned with CamScanner

Scanned with CamScanner

,,]EL, Mojra»{ﬂo?\ __ o)

a lULanLMS You uppUC bowrd) of e WMM&'
-\-HY\Q.- o'.t a.iaaom%m

ZFory arsg OF
| 0N w&m b e me & O‘j

1
l
|
kmﬁ:?«i?’r Pasidive o Nmdantss orof O

Mﬂ(ﬂ)):{ig\iﬁu 04 g & £(n) dor oM NNo 3

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

L5 od Some CoMON CW;FT‘OPWLGM Tubation)-

sy o 2P

A . Q.L)
S;Umc-— o)
LIM s 0-(”)
N4~ o (nlegn)
quadiatic. — o(n?)
Cuhi o — o(Nn3
poly el - nm(i?«o
WOMGJ - 2

Scanned with CamScanner

Scanned with CamScanner

Searching Algorithms

There are two popular algorithms available:

1. Linear Search

2, Binary Search

Linear Search

Linear search is a very basic and simple search algorithm. In Linear search, we
search an element or value in a given array by traversing the array from the starting,
till the desired element or value is found.

It compares the element to be searched with all the elements present in the array and
when the element is matched successfully, it returns the index of the element in the
array, else it return -1.

Linear Search is applied on unsorted or unordered lists, when there are fewer
elements in a list.

Features of Linear Search Algorithm

1. It is used for unsorted and unordered small list of elements.
2. It has a time complexity of O(n), which means the time is linearly dependent on the
number of elements, which is not bad, but not that good too.

3. It has a very simple implementation.

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Binary Search

Binary Search is used with sorted array or list. In binary search, we follow the
following steps:

. We start by comparing the element to be searched with the element in the middle of
the list/array.

. If we get a match, we return the index of the middle element.

. If we do not get a match, we check whether the element to be searched is less or
greater than in value than the middle element.

. If the element/number to be searched is greater in value than the middle number,
then we pick the elements on the right side of the middle element(as the list/array is
sorted, hence on the right, we will have all the numbers greater than the middle
number), and start again from the step 1.

. If the element/number to be searched is lesser in value than the middle number,
then we pick the elements on the left side of the middle element, and start again from

the step 1.

Binary Search is useful when there are large number of elements in an array and they
are sorted.

So a necessary condition for Binary search to work is that the list/array should be
sorted.

Features of Binary Search

. Itis great to search through large sorted arrays.

. It has a time complexity of O(log n) which is a very good time complexity. It has a

simple implementation.

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

