Cryptography

A historical moment ...

The *enigma* machine was used to secure communication of german military throughout the second world war ...

... and it changed the course of human history.

Intuition

- Cryptography is the art (and sometimes science) of secret writing
 - Less well know is that it is also used to guarantee other properties, e.g., authenticity of data
 - This is an enormously deep and important field
 - However, much of our trust in these systems is based on faith (particularly in efficient secret key algorithms)
- Cryptographers create ciphers Cryptography
- Cryptanalyst break ciphers Cryptanalysis

The history of cryptography is an arms race between cryptographers and cryptanalysts.

Cryptosystem

A cryptosystem is a 5-tuple consisting of

Where,

E is an *encryption* algorithm

D is an *decryption* algorithm

M is the set of *plaintexts*

K is the set of *keys*

C is the set of *ciphertexts*

$$E: M \times K \rightarrow C$$
 $D: C \times K \rightarrow M$

$$D: C \times K \rightarrow M$$

What is a key?

- A key is an input to a cryptographic algorithm used to obtain confidentiality, integrity, authenticity or other property over some data.
 - The security of the cryptosystem often depends on keeping the key secret to some set of parties.
 - The keyspace is the set of all possible keys
 - Entropy is a measure of the variance in keys
 - · typically measured in bits
- Keys are often stored in some secure place:
 - passwords, on disk keyrings, ...
 - TPM, secure co-processor, smartcards, ...
- · ... and sometimes not, e.g., certificates

Transposition Ciphers

- Scrambles the symbols to produce output
- The key is the permutation of symbols

Substitution Ciphers

- Substitutes one symbol for another (codebook)
- The key is the permutation

Encryption algorithm

 Algorithm used to make content unreadable by all but the intended receivers

- Algorithm is public, key is private
- Block vs. Stream Ciphers
 - Block: input is fixed blocks of same length
 - Stream: stream of input

Example: Caesar Cipher

- Substitution cipher
- Every character is replaced with the character three slots to the right

Q: What is the key?

S E C U R I T Y A N D P R I V A C Y V H F X U L W B D Q G S U L Y D F B

Cyptanalyze this

"AVGGNALYVBAF"

Cryptanalysis of ROTx Ciphers

- Goal: to find plaintext of encoded message
- Given: ciphertext
- How: simply try all possible keys
 - Known as a brute force attack

```
1 T F D V S J U Z B M E Q S J W B D Z
2 U G E W T K V A C N F R T H X C E A
3 W H F X U L W B D Q G S U L Y D F B
S E C U R I T Y A N D P R I V A C Y
```

Shared key cryptography

- Traditional use of cryptography
- Symmetric keys, where A single key (k) is used is used for E and D

$$D(k, E(k, p)) = p$$

- All (intended) receivers have access to key
- Note: Management of keys determines who has access to encrypted data
 - E.g., password encrypted email
- Also known as symmetric key cryptography

The one-time pad (OTP)

- Assume you have a secret bit string s of length n known only to two parties, Alice and Bob
 - Alice sends a message m of length of n to bob
 - Alice uses the following encryption function to generate ciphertext c

for all i=1 to n :
$$c_i = m_i \oplus s_i$$

- E.g., XOR the data with the secret bit string
- An adversary Mallory cannot retrieve any part of the data

- Simple version of the proof of security:
 - Assume for simplicity that value of each bit in m is equally likely, then you have no information to work with.

Data Encryption Standard (DES)

- Introduced by the US NBS (now NIST) in 1972
- Signaled the beginning of the modern area of cryptography
- Block cipher
 - Fixed sized input
- 8-byte input and a 8-byte key (56-bits+8 parity bits)

DES Round

- Initial round permutes input, then 16 rounds
- Each round key (ki) is 48 bits of input key
- Function f is a substitution table (s-boxes)

Cryptanalysis of DES

- DES has an effective 56-bit key length
 - Wiener: 1,000,000\$ 3.5 hours (never built)
 - July 17, 1998, the EFF DES Cracker, which was built for less than \$250,000 < 3 days
 - January 19, 1999, Distributed.Net (w/EFF), 22 hours and 15 minutes (over nearly 100,000 machines)
 - We all assume that NSA and agencies like it around the world can crack (recover key) DES in milliseconds
- What now? Give up on DES?

Variants of DES

DESX (two additional keys ~= 118-bits)
Triple DES (three DES keys ~= 112-bits)
Keys k1, k2, k3

$$c = E(k_3, D(k_2, E(k_1, p)))$$

Advanced Encryption Standard (AES)

- Result of international NIST bakeoff between cryptographers
 - Intended as replacement for DES
 - Rijndael (pronounced "Rhine-dall")
 - Currently implemented in many devices and software, but not yet fully embraced
 - Cryptography community is actively vetting the the theory and implementations (stay tuned)

Hardness

- Functions
 - Plaintext P
 - Ciphertext C
 - Encryption key ke
 - Decryption key k_d

$$D(k_d, E(k_e, P)) = P$$

- Computing C from P is hard, computing C from P with ke is easy
- Computing P from C is hard, computing P from C with kd is easy

Hardness

- Functions
 - Plaintext P
 - Ciphertext C
 - Encryption key ke
 - Decryption key kd

$$D(k_d, E(k_e, P)) = P$$

- Computing C from P is hard, computing C from P with ke is easy
- Computing P from C is hard, computing P from C with kd is easy