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DISCLAIMER

This document does not claim any originality and cannot be used as a
substitute for prescribed textbooks. The information presented here is
merely a collection from different reference books and internet
contents. Various sources as mentioned at the reference of the
document as well as freely available material from internet were
consulted for preparing this document. The ownership of the
information lies with the respective author or institutions. Further, this
document is not intended to be used for commercial purpose and the
faculty is not accountable for any issues, legal or otherwise, arising out
of use of this document. The faculty members make no
representations or warranties with respect to the accuracy or
completeness of the contents of this document and specifically
disclaim any implied warranties of merchantability or fitness for a
particular purpose.



SYLLABUS

Module I:

Introduction: Elastic, plastic and visco-elastic deformation.

Continuum mechanics: Concepts of stress and strain in 3D stress and strain tensor,
principal stresses and strains and principal axes, mean stress, stress deviator,
maximum shear, equilibrium of stresses, equations of compatibility.

Plastic response of materials: a continuum approach: classification of stress-strain
curves, yield criteria

Module Il:

Plastic deformation of single crystals: Concepts of crystal geometry, lattice defects,
deformation by slip, slip in a perfect lattice, slip by dislocation movement, critical
resolved shear stress, deformation by twinning, stacking faults, deformation band and
kink band, strain hardening of single crystal; stress-strain curves of fcc, bcc and hcp
materials



MODULE-I




INTRODUCTION

* Deformation behavior is a branch of Mechanical Metallurgy.

Branch of Metallurgy which deals with response &
behavior of metals to load or force applied.

Before After

* Deformation refers to the change in size or shape of an object.

* The mechanical metallurgists focus on the metals or materials used. To look
for different mechanical testing and observe the materials under a
microscope and find out why and how they behave under loading. Then use
this information to design better applications.



TERMS

continuous body: one which does not contain voids or
empty spaces of any kind.

Homogeneous: 1f the body has 1dentical properties at all
points.

Isotropic: A body 1s considered to be i1sotropic with
respect to some property when that property does not vary
with direction or orientation.

Anisotropic: A property which varies with orientation
with respect to some system of axes.




STRESS & STRAIN

Stress 1s defined as a force
applied per unit area. It is given
by the formula

F

A
* Where, o is the stress applied

F 1s the force applied
A 1s the area of force
application

e The unit of stress is N/m?

Strain 1s defined as change in
length divided by original length
Al

e=_
l

 Where, e 1s the strain
Al 1s change in length

[, 1s the change 1n length
Dimensionless.
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Figure I-I Cylindrical bar subjected to axial load.




ELASTICITY

Elasticity deals with elastic stresses and
strains, their relationship, and the external
forces that cause them.

An elastic strain is defined as a strain that
disappears instantaneously once the forces
that cause it are removed.

The limiting load beyond which the material
no longer behaves elastically is the elastic
limit.




HOOKE'S LAW

* In 1678, Robert Hooke performed |,
experiments  that  demonstrated  the| | =,

proportionality between stress and strain Stress o Strain
! 0 o €
* For most materials, as long as the load does |§ . o =F¢
not exceed the elastic limit, the deformation |3 3 F =9
1s proportional to the load. ;é :

* Load vs. Deformation curve should be| &~

lineal‘. Strain . E = Young's modulus of elasticity

STRESS is proportional to STRAIN

Force

failure

But not all elastic materials follow
Hooke’s law of linearity.

Example-Rubber

e.g. rubber

>

0 Extension




Styrene Butadiene Rubber(molecular simulation)



PLASTIC DEFORMATION

If the elastic limit 1s exceeded, the body will experience a permanent set or deformation when the load is
removed. A body which is permanently deformed is said to have undergone plastic deformation.

*  OA s the elastic region with in which
Hooke’s law is obeyed.

*  Ais the elastic limit.

* Aisreplaced by A’(proportional limit)
considering the sensitivity of strain measuring
instrument. It is the stress at which stress
strain curve deviates from linearity.

*  For engineering purposes the limit of
usable elastic behavior is described by

the yield strength, point B.

*  The yield strength is defined as the stress

which will produce a small amount of permanent

deformation, generally equal to a strain of 0.002.

This permanent strain, or offset, i1s OC.
As plastic deformation increases metal becomes

stronger and it reaches the maximum value(Ultimate

Tensile Strength).

Stress o

Strain &




Stress

BRITTLE vs. DUCTILE BEHAVIOR

Brittle Materials: A completely brittle material would fracture almost at the elastic
limit. A brittle metal, such as white cast iron, shows some slight measure of
plasticity before fracture

Ductile Materials: Shows adequate plastic deformation. E.g. Cu, Al etc.

Brittle

Ductile

Stress

Stress, o (MPa)

Strain Strain

(a) (b)

Strain, £ (mm/mm)



VISCOELASTIC DEFORMATION

Viscoelasticity is the property of materials that exhibit both
viscosity & elastic characteristics when undergoing deformation.

Elastic behavior :no energy is lost during a load—unload cycle)

Viscoelastic behavior: energy equal to the shaded area is lost in a load—unload
cycle.

E.g. Polymers

Stran (y)
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Elasticity Viscoelasticity Strain returns to 0 with time




Factor of Safety

metals on the ultimate tensile strength o,. Values of working stress are established
by local and federal agencies and by technical organizations such as the American
Society of Mechanical Engineers (ASME). The working stress may be considered
as either the yield strength or the tensile strength divided by a number called the
factor of safety.

s P o

w=:&7.;

o or a, N (1-5)
where o,= working stress

o, = yield strength

o,= tensile strength

N,= factor of safety based on yield strength

N,= factor of safety based on tensile strength

The value assigned to the factor of safety depends on an estimate of all the
factors discussed above. In addition, careful consideration should be given to the
consequences, which would result from failure. If failure would result in loss of
life, the factor of safety should be increased. The type of equipment will also
influence the factor of safety. In military equipment, where light weight may be a
prime consideration, the factor of safety may be lower than in commercial
equipment. The factor of safety will also depend on the expected type of loading.
For static loading, as in a building, the factor of safety would be lower than in a
machine, which is subjected to vibration and fluctuating stresses.




NORMAL STRESS & SHEAR STRESS

Shear Stresses

(Think Friction

on Surface) Normal Stresses
> —— e (Think Push / Pull)

Element Deformation Due to
Shear Stress

Deformation Due to
Normal Stress 1




SHEAR STRAIN
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between any two lines. The angular change in a right angle is known as shear
strain. Figure 1-7 illustrates the strain produced by the pure shear of one face of a
cube. The angle at A4, which was originally 90°, is decreased by the application of
a shear stress by a small amount 8. The shear strain y is equal to the displace-
ment a divided by the distance between the planes, 4. The ratio a/h is also the
tangent of the angle through which the element has been rotated. For the small
angles usually involved, the tangent of the angle and the angle (in radians) are
equal. Therefore, shear strains are often expressed as angles of rotation.

a
=7 = tanf = 6 (1-12)



STRESS TENSOR

A tensor is a multi-dimensional array of
numerical values that can be used to
describe the physical state or properties

of a material.
N =K~ % “ o, . Oxx Oxy Oxz
b4 o= (%x Oyy Oyz
. Ozx Ozy Ogzz
N=no. of components required to specify a o : o
tensor 0= -
K= Dimension
_ O 5 o
n=Rank ‘) xx O' y— O‘. .
Example: F 3D f ‘/T o O, /7 )g ll
or ) no. .O - !
components reqd. to specify = /,,,
th€ tCIlSOI':32=9 Orientation of Direction oi;
the surface the force

Rank 0-only magnitude-Scalar
Rank 1-Magnitude & Direction-
Vector

Rank 2-Magnitude, Direction &
Plane-Stress




STATE OF STRESS IN 2D

For any state of stress it is always possible to define a new coordinate
system which has axes perpendicular to the planes on which the
maximum normal stresses act and on which no shearing stresses act.
These planes are called the principal planes, and the stresses normal to
these planes are the principal stresses. For two-dimensional plane stress
there will be two principal stresses and which occur at angles that are 90°
apart.

When shear stress is zero, principal strain occurs.

For the general case of stress in three dimensions there will be three
principal stresses, and

Maximum & Minimum Principal stresses for 2D state of stress is given by:

_ _ 2 1/2
Omax = 01 o, to, 0, — 0, 4 72 #
2 Txy

R +
Omin — 2

mi 2

Maximum shear stress




STATE OF STRESS IN 3D

Ox TX YV Tx z
TVX Oy Tvz
sz Tz y oz

Solution of the determinant results in a cubic equation in o.
qué 0,220,220,

3 2 2 ‘ 2 - )
0—0+U+oo+(oo+oo+oo—'r - —7)0

( x Y Z) Xy y X Xy 2 . Plane perpendicular to

2 2 2 principal direction
N (quvoz + 2Txy7yzfxz — 0T, 0T T Gszy) =0 has no shear stress...
Where, t,, =71, ,T,,=T,,, T,= T,
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PRINCIPAL STRESSES

Oy, () () g, () ()
O, ;= () s P O |=1] 0O T, ()
: n () () - . 1L () () a,

o, 20,20,

Plane perpendicular to

» MAXIMUM SHEAR STRESS ~ principal direction

has no shear stress...

Since according to convention o, is the algebraically greatest principal normal
stress and o, is the algebraically smallest principal stress, 7, has the largest value
of shear stress and it is called the maximum shear stress 7, ..

I =—— (2-21)




QUESTION:

GIVEN:

* 01=200 MPa in tensile direction
* 02=150 MPa in tensile direction

* 03=300 MPa in Compressive direction

Find Maximum Shear Stress.




MOHR'’S CIRCLE IN 3D

It gives a geometrical
representation of the
equations that shows the
transformation of  stress
components to different sets
of axes.

Shear stress is maximum in
case of uniaxial tension or
compression.

The bi-axial and tri-axial
stresses reduce the shear
stresses thus ductility also
reduced.

Thus brittle fracture s
associated  with  triaxial
stresses that generated at a
notch or stress raiser.

()

Oz
jﬁ 3
a3

oy==—20,=—203

(e)

Figurelz-lll Mohr’s circles (three-dimensional) for various states of stress. (a) Uniaxial tension:
(lf)) I:Imaxml compression; (¢) biaxial tension; (&) triaxial tension (unegual); (e) uniaxial tension plus
biaxial compression.

T

o« © Equi-triaxial tension




HYDROSTATIC STRESS

* Hydrostatic state of stress is when a material
is subjected to equal normal stresses along all
three coordinate axes with shear stresses all
zero. An example is a body immersed in a fluid

Hydrostatic compressive stress

* 0l=02=03
» These Principal Stresses lo*
may be all tensile or compressive O 02

The hydrostatic or mean stress is given by

_okk_ax+ay+oz 0, + 0, + 0y /7'1
ST 3 3




HYDROSTATIC STRESS

Involves only in elastic volume changes and
does not cause plastic deformation.

o) 0 0

0 o, 0

0 0 o

m
The hydrostatic or mean stress is given by

; _ok,(_ax+oy+az_al+02+o3

"3 3 3




STRESS DEVIATOR

* |t involves shearing stresses and causes plastic

deformation
e TOTAL STRESS = HYDROSTATIC STRESS + STRESS DEVIATOR

* STRESS DEVIATOR = TOTAL STRESS - HYDROSTATIC STRESS

’ —_— —
g; J T; 7 Urnaf J



Hjolros—\ajnc & De_ma‘rnc éjrresseg,‘

H]oh\ e Hjcfros-ln-f-ic Gress +£"fr€/ﬂsDav3a+or

B o e + &
€, Couy Oz (M v B /
% é‘ -~ |=lo &m © + g’u‘
L T T D
o Zz(j éz
/ £y Toy ez g"" °°
7 & = | & Tz|7 |0 bum O
29 ZZ‘J éz. O O ém
7 oy bbm T 2
’ Zj!)t- @Fgry) th
223 2y 62.'6"’?
Where 8, 6x 16y 162
3
,FLJ—Z Toy  Cxz
7 5*'2553“‘"‘*” @”) T - B Ty
e 5261"6 'SJ

Hydrostatic Stress &

Stress Deviator

"77-"[)(_5 Sfress 5 o .?,nqlrnn tensor,
A, S0 # has He 0/ ofrc c%wsc
=

of Has /27?

’hﬁ r)‘nﬂCJ['ELI \/q}ue,g (Qn e ol:.fcuhe ‘I b‘g

nr*{mj ,\00# a/ .,L{,F @7uo}m:)477
( §') -7 (60567, o |

i
|
j{g': (gumf P)onoym/ minoks !

J"Z ) + 92 fzwz *5/6 55 @Cfi/

~ [y *@6z)+(6“—@ -

Y € (15,120
%w}(@@ )J

:]3; Determ \'m;)f f




VOLUMETRIC STRAIN
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EQUATION OF STRESS EQUILIBRIUM
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CONSTITUTIVE EQUATIONS FOR ELASTIC MATERIALS

e Normal Stress

e Acts normal to the

plane.

Stress o< Strain

0 « €

o =E¢
o

E =—

€

* E = Young's modulus of elasticity

% lft

WL}

’IfI N I

Normal Stress

 Shear Stress

* Lies on plane and acts
parallel to the plane
The shearng stresss actng on the unit cube produce shearing srans

Txy - Gny Tyz - Gsz ™ nyz

X

G=Shear Modulus or Modulus of rigidity.

1* ‘;_4-4—

Shear Stress




e Bulk Modulus=

Hydrostatic Stress & Bulk Modulus

Hydrostatic Stress

Change in Volume

[ ) K:%
A
o . 1
K="= .
A A B
B 1s the compressibility.

K=Bulk Modulus or Modulus of elasticity

P /R
/ ‘|
f e e win

|
L2,
LP.,__I_.:



Poisson’s Ratio

While a tensile
~ force in the x direction produces an extension along that axis, it also produces a
contraction in the transverse y and z directions. The transverse strain has been
found by experience to be a constant fraction of the strain in the longitudinal
direction. Thus is known as Poisson’s ratio, denoted by the symbol ».

Vo

6y =€ = TV =~ (2-63)
Only the absolute value of v is used in calculations. For most metals the values?
of v are close to 0.33.

| S (o]



Strain in the Strain in the Strain in the

Stress x direction y direction z direction
o, vo, vo,
o =% ©“="F w7
- % - I
g, €x E £, = £ E, E
vo, vo, g,
o, £, = —~ & = — % & =%
1
£, = E[ox —v(o, + crz)]
1. 4
g, = E 0, — v(o, + ox)_
| - :
£, = E |0, — v(ox . oy)‘

The shearing stresses acting on the unit cube produce shearing strains.
= 0%y 1.=Gv, T.=0Y,

1 -2y
ex+ey+ez=——E———(ox+ay+az)




Relationship between the Elastic Constants

The elastic constants we discussed about are E,G,K and v(poisson’s
ratio)

There are two independent elastic constants.

Different relationships may be derived from these Elastic constants.

1 —2»p
1 -2
e, +e, +e = (0, + 0, + 0,) A = ”30
E m
X c,, E
A 3(1 - 2»)
9% 1-2G/3K
E=1T3x/6 "~ 2+26/3K &
C31-2w)K O E G =
=+ *T9T3EsG 2(1 + »)




Question (GATE 2014)

What 15 the hydrostatc stress for the state of stress represented by o; given below?

100 50 50
5 =(50 125 75
50 75 75 .

Question(GATE 2018)

Consider the following stress state imposed on a material:

90 50 0
o=|50 -—-20 0 | MPa.
0 0 140

If the material responds elastically with a volumetric strain 4 = 3.5 X 10™%, what is its

bulk modulus?

(A) 150 GPa (B) 350 GPa (C) 200 GPa (D) 400 GPa -



STRAIN ENERGY
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Classification of Stress-Strain Curves

Ductile Material Brittle Material

U, F

Stress, O
Stress, O

Strain, € Strain, €

* Brittle Materials do not show plastic
deformation where as Ductile Materials do.



Stress

OA:
: Elastic limit
: Yield stress point/uppe!

o 0O

v

Strain

Low Carbon Steel

NECKING

engineering stress

: Lower yield stress point
: Ultimate stress point
: Breaking or rupture poir

Proportional limit

yield stress point

Engineering stress, psi

T |

"o
o
o
o

1000 1

-+

~

—

e N

engineering strain

2 4
Engineering strain

Polymer



FLOW CURVES 7

| .

€3 € €

€ —>

(a)

A, when the load is released the total strain will immediately decrease from e, to
¢, by an amount o /E. The strain decrease &, — ¢, is the recoverable elastic strain.
However, the strain remaining is not all permanent plastic strain. Depending
upon the metal and the temperature, a small amount of the plastic strain ¢, — e,

will disappear with time. This is known as anelastic behavior. (Generally the
anelastic strain is neglected in mathematical theories of plasticity.




FLOW CURVES

& —>»

(h)
Usually the stress-strain curve on unloading from a plastic strain will not be:

exactly hinear and parallel to the elastic portion of the curve (Fig. 3-15).

Moreover, on reloading the curve will generally bend over as the stress ap-

proaches the original value of stress from which it was unloaded. With a little
additional plastic strain the stress-strain curve becomes a continuation of what it
would have been had no unloading taken place. The hystere51s behavior resultmg
from unloading and loading from a plastic strain is generally neglected in
plasticity theories.



FLOW CURVES &%

(c)

It a specimen 1s deformed plastically beyond the yield stress in one direction,
e.g. In tension, and then after unloading to zero stress it is reloaded in the
opposite direction, e.g,, in compression, it is found that the yield stress on
reloading is less than the original yield stress. Referring to Fig, 3-1, o, < o, This
dependence of the yield stress on loading path and direction is called the

Bauschinger effect.|The Bauschinger effect s commonly ignored in plasticity

theory, and it is usual to assume that the yield stress in tension and compression
are the same,




€ € €
(a) (4) (2)

Figure 3-2 Idealized flow curves. (a) Rigid ideal plastic material; (b) ideal plastic material with
elastic region; (¢) piecewise linear (strain-hardening) material.



Questions for Practice

The engineering stress-strain curve for a ceramic matenal is

(A) parabolic (R) exponential (C) logarithmic (D) Jinear

A square of 9 mm”“ area is subjected to simpie shear displacement +/3 mm along x-direction, as
shown below " -

v
x
<
&
r
r
F )
4
f

r
7 F
a 7

The shear strain imparted will be
(A) 173 (B) 1/\3 () 3 (D)3

An aluminium alloy rod of diameter 15 mm and Jength 120 mm is subjected 10 a tensile load of 35,000 N
along its axis. The Young™s modulus and Poisson's ratio for aluminium are 70 GPa and 0.33 respechively.

Q.50 The reduction in diameter on the application of tensiie loud is
(A)O0CIl mm (B) 0.014 mm (C) 0.018 mm {2) 0.021 mm

.51 The elasuc strain energy is approximately
(A) 200 kI m™ {B) 240 kI m™" {C)280 kI m™" (D) 320 kK m™



YIELD CRITERIA

Von Mises’ Criterion

= "/1_5[(01 = "2)2 + (0, - “3)2 + (0, - 01)2]1/2

Maximum Shear Stress
or Tresca Criterion

0=

-1/2:[(0x-0y]2+(0y—o)2 (o-o) +6('r +f b )]1/_2

(’1 - (13 (JO

Tmax = 7y Iy

Yielding occurs when value right side of the
equation exceeds the yield stress in uniaxial
tension.

Yielding occurs when maximum
shear stress reaches the value of the
shear stress in the uniaxial tension
test.
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QUESTION:

Example Stress analysis of a spacecraft structural member gives the state of
stress shown below. If the part is made from 7075-T6 aluminum alloy with
o, = 500 MPa, will it exhibit yielding? If not, what 1s the safety factor?

o, = 50 MPa

A gl

0.~ 1) (o “0) 4 (0,-0) +6(7”,+f b )]1/2

I__> o, = 100 MPa

/ 0; — 0 T
./xy=30MPa I = —— =1 = —

s, = 200 MPa max )

* Calculate the yield stresses(0) using Von Mises and Tresca criterion.

*  Willityield by this state of stresses?

ANS: Put 0,=200,0,=100 & o,= =50 in Von Mises equation and put 6,=0,=200, 06;=0,= =50 in
Tresca equation

e 224MPa(by Von Mises criteria) & 250MPa by Tresca criteria.

* It will not yield as the calculated yield stresses are much less than that of the given yield
stress.(224<500 and 250<500)



OCTAHEDRAL SHEAR STRESS

For such a geometric body, the angle between the normal to one of the faces and
the nearest principal axis is 54°44’, and the cosine of this angle is 1/ V3. This is
equivalent to {111} plane in an fcc crystal lattice.

The stress acting on each face of the octahedron can be resolved' into a
normal octahedral stress o,, and an octahedral shear stress lying in the oc-
tahedral plane, 7,,. The normal octahedral stress is equal to the hydrostatic
‘component of the total stress ’

. — o, + 0, + 05 Yy (3-32) e |

oct 3 m

The octahedral shear stress 7__,_1s given by

Toct = %[(01 - 02)2 + (0, — "3)2 + (03 — 01)2] . (3-33)

o]

so we need to relate it to the axial yield strength o,. For a given material under axial load where
o) = opand 2= o3 = 0, we assume that yielding occurs when the octahedral shear stress is
equivalent to the octahedral stress criterion. This means we can combine Eq. 2 and 4 to get the
octahedral stress criterion in terms of the yield strength:

T,0 =T, = 34/(0, —07 +(0-0)* +(0-0,f = 2o, (5)

With o, = 732-1',,0 , we expect to observe yielding in a material under 3-D loading when, as before,

we combine Eq. 2 and 4 to get

60:712' (61_02)2+(02_03)2+(63_61)2 (6)



OCTAHEDRAL SHEAR STRESS

Since the normal octahedral stress is a hydrostatic stress, it cannot produce
yielding in solid materials. Therefore, the octahedral shear stress is the component
of stress responsible for plastic deformation. In this respect, it is analogous to the
stress deviator.

Since Eq. (3-34) is identical with the equation already derived for the distortion-
energy theory, the two yielding theories give the same results. In a sense, the
octahedral theory can be considered the stress equivalent of the distortion-energy
theory. According to this theory, the octahedral shear stress corresponding to
yielding in uniaxial stress is given by

V2

Tocy = TUO = 0.47160 (3-35)




OCTAHEDRAL SHEAR STRAIN

Octahedral strains are referred to the same three-dimensional octahedron as
the octahedral stresses. The octahedral linear strain is given by
g t &, + &

Eoct = 3 (3'36)

Octahedral shear strain is given by

) 5 211/2
o = (e = €2 + (12 = )7 + (o = &))"
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ASSIGNMENT

(a) Tensile strain (b) Volumetric strain (c) Shear Strain (d) Compressive strain
2. Hooke’s Law is applicable up to:

(a)Yield Point (b) Ultimate Tensile Stress (c) Elastic Limit (d) Fracture point
3. Poisson’s ratio is given by:

(a)Longitudinal strain/Transverse strain (b) Shear strain/Lateral Strain (c) Transverse strain / Longitudinal strain (d) Volumetric
strain/Shear strain

4. A rod, 100 cm long and of diameter 4 cm is subjected to an axial load of 22 kN. The stress in N/m2 is.:

(a)1.75%107 (b) 4.37x106 (c) 1.75x103 (d) 4.37x103
5. The property of a material by which it can be rolled into thin sheets, is called:

(a)Elasticity (b)Malleability (c) Ductility (d) Viscosity

6. Briefly write about Tensile stress , Tensile strain, Shear Stress, Shear strain.
7. Draw stress-strain curves for brittle & ductile materials.

8. Which component of stress tensor causes plastic deformation?

9. A stress of 200MPa is applied in longitudinal direction of a steel rod, find the transverse strains (Assume isotropic condition and
v(poisson’s ratio)=0.33, E=207 GPa).

10. A uniaxial stress is applied on a rod which resulted in elastic deformation with a strain of 0.025. Find the volumetric strain if
v(poisson’s ratio)=0.33.

11. Find the Bulk modulus by using the data given in question no. 9.
12. A steel wire of cross sectional area 2mm2 and length 1m is stretched to 1.02m. Find the strain energy if E=200GPa.
13. Find stress deviator using the following stress tensor.

100 50 50
Oij = 50 125 75
50 75 75
14. Find the principal stresses (in MPa) for the given state of stress.

0 —48 0
[—48 40 0 ] MPa
0 0 —-56
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CRYSTAL GEOMETRY

* Crystal: Regular 3D patterns of atoms in space.

e Lattice: Distribution of points in 3D in such a way that
every point has identical surroundings.

* Basis or Motif: Putting one or more atoms at a lattice
point is called the basis or motif.

Lattice + Basis = Crystal Structure

¢ o o 000
e ¢ - 9- 000
¢« & o 000




Crystal System

Axial
Relationships

Interaxial Angles

Unit Cell Geometry

* Unit Cell:
Cubic a=b=c a=p=y=or » The atomic order in crystalline
Za solids indicates that small groups of
atoms form a repetitive pattern,
Ty thus, in describing  crystal
Hexagonal a=brc  a=p=wry=10 ||| ]! structures, it is often convenient to
SN subdivide the structure into small
repeat entities called unit cells.
Tetragonal a=b#c a=pB=y=9%° .
Rhombohedral a=b=c a=B=y#+N° l.‘?
(Trigonal) » ﬂ
BCC unit cell & aggregate of atoms
Orthorhombic a b#c a=pB=y=9% -
. Atomic Atomic
Crystal Radius” Crystal Radius
o Metal Structure” (nm) Metal Structure (nm)
. Aluminum FCC 0.1431 Molybdenum BCC 0.1363
R e ciad b b \ ‘A \ Cadmium HCP 0.1490 Nickel FCC 0.1246
“5—" Chromium BCC 0.1249 Platinum FCC 0.1387
Cobalt HCP 0.1253 Silver FCC 0.1445
Copper FCC 0.1278 Tantalum BCC 0.1430
Gold FCC 0.1442 Titanium (a) HCP 0.1445
- Iron (a) BCC 0.1241 Tungsten BCC 0.1371
Hiciulc BT it sl R Lead FCC 0.1750 Zinc HCP 0.1332

William D. Callister, Material science materials science and engineering.



Crystallographic Planes

e A crystallographic plane is specified in terms of length of its
intercepts on the three axes, measured from the origin of
the coordinate axes.

* Miller Indices: Planes and Directions will be specified w.r.t.
the axes in terms of Miller Indices.

Qus: But, how to find Miller indices??
Ans: Just follow the simple stepsl!!

Find the intercepts along the axes.

Take reciprocals of these intercepts.

Change the reciprocals into smallest integers.
Enclose the integers in parentheses ().

S Y Y




 Example:
1. Intercepts along the axes:
2,3,2
2. Reciprocals of these:
1/2,1/3,1/2
3. Changing to integers:

(Find the least common
denominator & multiply this
with the reciprocals)

323
4. Enclosed in parentheses:
(323) === Miller Indices

http://www.chemohollic.com/



How to draw a plane if

Miller indices are given:

Find the reciprocals.
Choose an
appropriate origin.
Mark the intercepts
on each axis.

Join them by straight
lines.

* Draw planes using
the given miller
indices:

* (210), (112), (123)



TRICK:

To Determine the origin.

(If there is a negative digit in
the miller indices, then move
the origin to the positive
direction for that axis).

e.g. if given miller indices are
(IT11), then move to 1 unit
in X-direction from the body
origin to find the appropriate
origin for the given plane.

Origins for Possible Coordinates

[-++]

A
y 4
[++-]
[+--]
[-+-] -]

[+++] Y>

Body origin [+ - +]
[- - +]



EXAMPLES

X (101 X (110 X (o)



Find the Miller Indices




Family of Planes

 The bar over one of the
integers indicates that the
plane intersects one of the

axes in a negative direction. *—2g-0 o .I
° &

e E.g. There are six -
crystallographically equivalent
planes of the type (100), any o—t5=0 o=2g
one of which can have the .T’

indices: (100), (010), (001), - = °*

(100),(010) (001)

* These all can be considered as
a group or family of planes
and represented as {100}.



Crystallographic Directions

* Crystallographic Directions are indicated by integers

in brackets: [uvw]

* Reciprocals are not used in determining directions.

* Family of directions is designated as: <uvw>

How to find a direction:

1.
2.

4.

Draw X, Y & Z axes.
Determine the origin. (If there is a negative no in the direction vector, then

move the origin to the positive direction for that axis).
Determine the end point.(Take common factor if any of the indices greater

than 1.)
Connect the origin with the end point to get the direction.

E.g. [212]==2[1 % 1]



Examples

010 !

[021] 1




Simple Relationships

For cubic systems there is a set of simple relationships between a direction
[uvw] and a plane (hkl) which are very useful.

ek

. [uvw] 1s normal to (hkl) when u = h; v = k; w = 1. [111] 1s normal to (111).

2. [uvw] 1s parallel to (hkl), 1e., [uvw] lies in (hkl), when hu + kv + Iw = 0,
[112] is a direction in (111).

3. Two planes (h,k,/;) and (h,k,[,) are normal if h;h, + kik, +11 = (.
(001) is perpendicular to (100) and (010). (110) is perpendlcular to (110)

4. Two directions w,v,w, and wu,v,w, are normal if wu, + v,v, + ww, = 0.
[100] is perpendicular to [001]. [111] is perpendicular to [112].

5. Angles between planes (h,k,/,) and (h,k,[,) are given by

(h? + KkE+2) (M3 + K3+ 13)"

cos @ =




QUESTIONS FOR PRACTICE

The miller indiogs of the direction commaon to the planes (111) and (110) in a cubic system1s

Ay () 110 ) (11 ) ()

th urit vectors§, j and K, the angle between lattce vectors [100] and

For a simple cubic unit cell wi
[111] in degrees is

(4)352 BT )60 )%

IDENTIFY THE PRIMITIVE CELLS

« FOR A RHOMBOHEDRAL CRYSTAL Given, Axis ‘a’=5 A, Angle between the axes
‘a’=50°. Find Axes ‘b’ and ‘c’ and angles B and y.




Lattice Defects

The defects or imperfections are the
occasional disruptions in the periodicity
within the crystals.

As crystal structure is a geometric concept, it
is natural to classify the defects based on the
basic geometry:

1. Point defects (Zero dimensional)
2. Line defects (One dimensional)

ILXX

3. Surface defects (Two dimensional)
4. Volume defects (Three dimensional or 3D)



Properties in terms of Sensitivity to Defect

e Structure Insensitive e Structure Sensitive

Properties: Properties:

 The properties of the crystalline * The properties of the crystalline
solid which are hardly or not solid which are profoundly
affected by the presence of affected by the presence of

defects in crystal. defects in crystal.
Structure-insensitive Structure-sensitive
Elastic constants Electrical Conductivity
Melu.ng point Semiconductor properties
Density Yield stress
Specific heat Fracture strength
Coefficient of thermal expansion Creep strength




Point Defects

Point defects is a defect of dimensions
like a point.

Types:

Vacancy exists when a atom is missing
from its normal lattice position.

In pure crystals, small no of vacancies
are created by thermal excitation.

Vacancies are thermodynamically stable
at temperatures greater than absolute
zero.

At equilibrium, the fraction of lattices
that are vacanct at a given temperature
is given by, p”

— — e
N

n= no. of vacant sites
N= no. of lattice sites

Es=energy required to move an atom
from interior of crystal.

k= Boltzmann Constant

—E /KT

vacancy

00 - &

®
®
®
O

eoo0o

Table 4-3 Equilibrium vacancies in a metal

Approximate fraction

Temperature, °C of vacant lattice sites
500 1 X101

1000 1x10°73

1500 §x10°%

2000 3x10°?

E,~1ev (=016 x 1078 ])




Point Defects

* Schottky defect:

* When equal no. of cations & anions are
missing from their regular lattice
positions.

* Frenkel defect:
e When an atom is shifted from a normal (a)schottky defect
lattice site and is forced in to interstitial.
* Interstitialcy
Occurs when an atom is trapped inside
the interstitial position.
 Impurity Atoms:

 The presence of impurity atoms at normal
lattice sites or at interstitial positions
create local disturbances in the lattice.

Interstitialcy

Impurity
atom

L XX



Reference Books

 Mechanical Metallurgy by G.E. Dieter.
* Physical Metallurgy by Vijendra Singh.
* Materials Science & Engineering: An Introduction by William D. Callister



