MODULE-1II

What is Stack Data Structure?

Stack is an abstract data type with a bounded(predefined) capacity. It is
a simple data structure that allows adding and removing elements in a
particular order. Every time an element is added, it goes on the top of
the stack and the only element that can be removed is the element that is
at the top of the stack, just like a pile of objects.

I e |
/I—\
ﬁ SRl = pepp)
push() | |
| |
| |
| | STACK
| | DATA STRUCTURE
I |
| |
L |
Basic features of Stack

1. Stackis an ordered list of similar data type.

2. Stack is a LIFO(Last in First out) structure or we can
say FILO(First in Last out).

3. push() function is used to insert new elements into the Stack
and pop() function is used to remove an element from the stack.
Both insertion and removal are allowed at only one end of Stack
called Top.

4. Stack is said to be in Overflow state when it is completely full and

is said to be in Underflow state if it is completely empty.

Scanned with CamScanner

Applications of Stack

The simplest application of a stack is to reverse a word. You push a given
word to stack - letter by letter - and then pop letters from the stack.

There are other uses also like:

1. Parsing

2. Expression Conversion(Infix to Postfix, Postfix to Prefix etc)

Implementation of Stack Data Structure

Stack can be easily implemented using an Array or a Linked List.
Arrays are quick, but are limited in size and Linked List requires
overhead to allocate, link, unlink, and deallocate, but is not limited
in size. Here we will implement Stack using array.

STACK - LIFO Structure

Ok ®W

push()

top

Empty Stack

top top

™ _\ pop()

In a Stack, all operations take place at the "top" of the
stack. The "push"” operation adds an item to the top of the
Stack.

The "pop" operation removes the item on top of the stack.

Algorithm for PUSH operation

1. Check if the stack is full or not.

2, If the stack is full, then print error of overflow and exit the

program.

3. If the stack is not full, then increment the top and add the element.

Scanned with CamScanner

Algorithm for POP operation

1. Check if the stack is empty or not.

2, If the stack is empty, then print error of underflow and exit the

program.

3. If the stack is not empty, then print the element at the top and

decrement the top.

Analysis of Stack Operations

Below mentioned are the time complexities for various operations that
can be performed on the Stack data structure.

Push Operation : O(1)
Pop Operation : O(1)
Top Operation : O(1)
Search Operation : O(n)

The time complexities for push() and pop() functions are O(1) because
we always have to insert or remove the data from the top of the stack,
which is a one step process.

Scanned with CamScanner

Conversion & Evaluation of Arithmetic Expressions

Arithmetic expression notations

In any arithmetic expression, each operator 1s placed in between two
operands of it (ie mathematical representation) This way of representing
an arithmetic expression is called as infix expression

eg. A+B.
Apart from usual mathematical representation of an arithmetic

expression, an expression can also be represented in the following two
ways:

1. Polish or Prefix Notation

2, Reverse Polish or Postfix Notation

Polish or Prefix Notation

The notation in which the operator symbol is placed before its operands,
1s referred as polish or prefix notation.

For Example: +AB. Reverse

Reverse or Postfix Notation

The notation, in which the operator symbol is placed after its operands,
is referred as reverse polish or postfix notation.

For Example: AB+

Advantage of Prefix & Postfix over Infix notation is that there no need of
parenthesis in the expression

Scanned with CamScanner

Mathematical Procedure for conversion:

The possible conversions are:

1. Infix to Prefix

2, Prefix to Infix
3. Infix to Postfix
4. Postfix to Infix
5. Prefix to Postfix
6. Prefix to Postfix

Standard Arithmetic Operators and Precedence Levels :

~ (exponential) Higher Level
I/ % Middle Level
+, - Lower Level

Scanned with CamScanner

Infix to Prefix:
> Identify the inner most brackets
> Identify the operator.according to the priority of evaluatlon

> Represent the operator and corresponding opera in prefix notation

> continue this process until the equivalent prefix expression is achieved.

Example : (A+B*(C-D"E)/F) ' j '

=(A+B*(C-["DE])/F)

=(A+B*[-C~DE]/F)
=(A+[*B-C"DE]/F)
=A+[/*B-C"DEF]
=+A/*B-C"DEF

Prefix to Inﬁx

> Identify the operator from right to left order

>
> Represent the operator and operands in infix notation
>
>
- them within ().
Example : +A/* B - C” DEF
=+A/*B-C[D"E]F
=+A/*B[C-D"E]F
=+A/[B*(C-D"E)]F
=+A[B*(C-D"E)/F]
_ =A+B*(C-D"E)/F
~ Infix to Postfix:
> Identify the inner most brackets

> Identify the operator according to the priority of evaluation
> Represent the operator and corresponding operator in postfix notation

> continue this process until the equivalent postfix expression is achieved.

The two operands which immediately follows the operaf[or are for evaluation

Continue this process until the equivalent infix expression is achieved.
If the priority of a scanned operator is less than any operators available with []; then put

Scanned with CamScanner

—

" pxample : (A+B*(C-D*E)/F)
=(A+B*(C-[DE~])/F)
=(A+B*[CDE~-]/F)
=(A+-[BCDEA__*]/F)
=A+[BCDE’._*F/]
= ABCDE » = *F/ +

Postfix to Infix:

Identify the operator from left to right order

The two operands which immediately preceeds the operator are for evaluation
Represent the operator and operands in infix notation

Continue this process until the equivalent infix expression is achieved

v V V V V

If the priority of a scanned operator is less than any operators available with [], then put
them within ().
~ Example : . ABCDE ” - *F/ +
=ABC[D " E] - *F/+
=AB[C- D"E]*F/+
=A[B*(C-D"E)]F/+
=A[B*(C-D"E)/F]+
 =A+B*(C-D"E)/F

" Prefix to Postfix:

Identify the operator from right to left order

The two-operands which immediafely follows the operator are for evaluation '
Represent the operator and operands in Postfix notation

Continue this process until the equivalent Postfix expression is achieved.

vV V. VvV VvV VvV

If the priority of a scanned operator is less than any operators available with [] then put
them within ().
. Example : +A/*B-C" DEF
=+A/*B-C[DE"]F
=+A/*B[CDE"-]F
=+A/[BCDE~-*]F
=+A[BCDE"-*F/]
'=ABCDE - *F/+

Scanned with CamScanner

Pbstfix to Prefix:

> Identify the operator from left to right order
> The two operands which immediately preceeds the operator are for evaluation
> Represent the operator and operands in prefix notation ‘
> Continue this process until the equivalent prefix expression is achieved
> If the priority of a scanned operator is less than any operators available with [], then put
them within ().
Example : ABCDE " — *F/ +
= ABC[* DE] - *F/+

=AB[-C"DE]*F/+

=A[*B-C"DE]F/+

=A[/*B-C""DEF]+’

.=+A/*B-C" DEF

4.7.3.3 Importance of Postfix Expression

Although human beings are quite used to work with mathematical expression i.e. INFIX notation,
which is rather complex as using this notation one has to remember a set of rules. The rules
include BODMAS and ASSOCIATIVITY. '

In case of POSTFIX notation, the expression, which 1s easier to work or evaluate the
expression as compared to the INFIX expression. In a POSTFIX expression, operands appear
before the operators, there is no need to follow the operator precedence and any other rules.

Actually, the processor represents the mathematical expression in postfix expression and
uses it for evaluation. To do this it implements the concept of stack.

4.7.3.4 Conversion of an INFIX expression into POSTFIX expression using Stack

Algorithm for converting from INFIX to POSTFIX _
[Assume Q 1s an Infix expression and P is the corresponding Postfix notation.]

Step 1: PUSH ‘(‘ onto STACK and Add ‘)’ at the end of Q
Step 2: Repeatedly scan from Q Until STACK is Empty

Step 2.1:If Q[I] is an operand, Then Add it to P[J] .
Step 2.2:Else if Q[1] is ‘(‘, Then PUSH Q[I]into STACK
Step 2.3: Else if Q[1]isan operator Then .

Step 2.3.1: While STACK[TOP] is an operator and has higher or equal priority
compared to Q[I]

Pop operators from STACK and add to P[J]
[End Of While] | ; |
Step 2.3.2: Push operator Q [1] onto STACK |

Scanned with CamScanner

Step2.4: Elseif Q[I]isan), Then |

Step2.4.1: Repeatedly pop operators from STACK and add to P[J] until *(* is
encountered L

Step 2.4.2: Remove ‘(‘ from STACK
[End Of IF]
[End Of Loop Step —2]

Step 3: Exit
Procedure of Conversion

eg. Q= (B*C-(D/E "F))

Symbol Scanned from Q Stack Postfix Expression P
(('
B K B
: T _ B
C (* | BC
. (- BC*

(- BCY

D (- (- BC*D |

/ (-(/ BCD

E (-(/ ciahBEIDE

2 TG~ . |BC*DE |

: e

) 1o BC * DEF ~/

) (- BC*DEF~/-

Scanned with CamScanner

Ingix +o Poskktx €anversion vsing Statek)

Q:lexe-(penp) ¢

&ci |

o |17

3

A\

I
Lo
™ |
|

o

N> M

Scanned with CamScanner

Scanned with CamScanner

4.7.3.8 Conversion of infix expresion to prefix expression using stack

[Assume Qs an infix expressmn Consider there are two stacks S1 and S2 exist. The following
algorithm converts the infix €xpression Q into its equivalent Prefix notation.]

Algorithm :

Step 1: Add left parenthesis ' ‘(“ at the beginning of the expressmn Q
Step 2: PUSH)’ onto Stack S1
S.wp 3: Repeatedly Scan Q in right to left order, Until Stack S1 is Empty
Step 3.1: If Q[I] is an operand, Then PUSH it onto Stack S2
Step 3.2: Else if Q 1] is *)’, Then PUSH it onto Stack S1
Step 3.3: Else if Q [I] is an operator (OP) , Then
Step 3.3.1: Set X :=POP (S1)
Step 3.3.2: Repeaf while X is an Operator AND (Precedence(X) > Precedence(OP))
- PUSH (X) onto Stack S2
- SetX :=POP (S1)
[End of While — Step 3.3.2]
Step 3.3.3: PUSH (X) onto Stack S1
Step 3.3.4: PUSH (OP) onto Stack S1

Step 3.4: Else if Q (1] is ‘(, Then
~ Step3.4.1: Set X :=POP(S1)
Step 3.4.2: Repeat, Whlle(X I=1)) [Until right parenthe31s found]
Step 3.4.2.1: PUSH (X) onto Stack S2
Step 3.4.2.2: SetX :=POP(S1)
" [End of While—Step 3.4.2]
[End of IF — Step 3.1]
[End of Loop — Step 3]

Step 4: Repeat, While Stack S2 is not Empty
Step4.1: Set X :=POP (S2)
Step 4.2: Display X
[End of While]

Step 5: Exit

Procedure 6f Conversion
eg Q= (A+B*C*(M*N’\P+T)—G+H
4_

Scanned with CamScanner

] - Stack S2
Symbol Scanned from Q) “ﬂljﬂ_____’_ . . SN |
N i — TG D
? ;1 HG ot Gl
L oo .
T TS HGT i
¥ yE)+ HOT 1o
P Y+ o 2"
A oy [HGTP
: N 1)+_)+A » ,HGTPN
> Yoy ~ [HGTPN®
™ e “[HGIPN'M
T T HGTPN"M*+
. y+* HGTPNAM*+
C +* HGTPNAM*+C
* T HGTPNAM*+C
B)+ "HGTPN"M*+CB
ot yrt HGTPNAM*+CB** >4
i -t - HGTPN’\M*+CB**A 4
n HGTPNM*+CB**A+-+ e
-3

So the Preﬁx Notation We can get by popping all the symbols from Stack S2.

ie. +- +A**BC+*M"NPTGH

Scanned with CamScanner

\f\i«m Yo pradac Whie s‘rauL "yt r'.‘

= LT+E
K- bM*N{-LO AP) W/ /¥ Pho

PMM "n erau\g,\

+¥-
N
S g

.QT
Q - VU WP Ak /(% NMPLE — -+

lww*r (&) Slatn ¢4 e
LSO - Ml
AP - IR .
T L 2gF
ﬁ.“V‘ T ‘J'ngii;;;;ﬁ
L sty av-
DTy R L
| ST T Yy AERL L

W Rk 7 TVAW -

ks TR/ 4 gTVUw

) k%) @Tvuw,"

g + & (%) L Tyl

e + ok /)R A § TVULWP o

0 Y g vuwf. -

I + & /% Q TVWWPN

i o 8§ TVWLWPNF//4

B Sr BTVRWPAXUEN

% ¥4k I&TV._L;AJP(*N*N-

| s TVWWP A k(] kN M

T ::f_ inwaA%/£NM*

— _ @TVUKMP(*H*NM*L

@vaw?m$uﬁnwm+
VUW PRR] d NMEL

L
+
W

erii’f;KLxMN*ﬂ«AoPmuv

Scanned with CamScanner

S

Scanned with CamScanner

/"/’ ' ' |
))]
LR = n+t :
R S e
A T s G -
=" Gyt T
T il
N YR - e TERE S
D) | _)_'.f\),_-‘ i+ ED
T) A (t+ ED =
- R T - T G+ E D — A
G D= GHHED-AC
T R ottEd ~Ac

S Rl S L
___//r

-———-'ﬁ?‘*l‘AB’C A - D.'E'f“'c"lj

Scanned with CamScanner

Scanned with CamScanner

4.7.3. 6 Evaluatlon of post f|x expression using stack

[Assume P 1s a post fix expression]
Step 1: Add)’ at the end of P | .
Step 2: Repeatedly scan P from left to rlght until) encountered

Step 2.1: if P{ 1] is an operand, then
Push the operand onto STACK

‘Step 2.2: else IfP[1]is an operator ® then
Step 2.2.1: Pop two elements from STACK
" (1%t element is A and 2™ element is B)

Step 2.22: - EvaluateB® A
Step2.2.3: Push result back to STACK
[End of IF] |
[End of loop — Step 2]
Step 3: VALUE: = STACK [TOP]
Step4: Display VALUE
Step 5: Exit. -

Scanned with CamScanner

: E__Wlw'fﬂ ne b-OHCIAM bmewm
g 174 .

@ 4 e 2 +

» |2

3/ =

Ny
L

Shack

8 op) A

- |
S d,

Jéflé’].

[+ |
<Lel o

[4)8 | 2

Gtz =8

whe |, &

g

(S}

[2c - L]

[3] 4.] 2

It «

f‘2|/3':l7

Bopr, ()

T

e ‘332-#-:\5?3
._ﬁni_

=

pC

Staex

g R (op) A

Cx 5-3n

l\>L’°i\JMﬂtﬂ'\'—m
o }

ol

Vv
~
o

<

-
X

d

Scanned with: CamScanner

Scanned with CamScanner

4.7.3.10 Evaluation of prefix expression
[Assume P is a Prefix Expres'si(-)n]‘ ~

- Step 1: Add “(“at the beginning of the prefix expression
Step 2: Repeatedly scan from P in right to left order until “(¢ encountered
Step 2.1: If P [I] is an operand, then
' PUSH the operand onto STACK
Step 2.2: Else if P [I] 1s operator (OP), then
Step2.2.1: ~ Pop two elements from STACK
- | (1St element is A and 2" element i isB)
Step 2.22: Evaluate A (OP) B
Step 2.2.3: Push result back to STACK
[End of if] |
[End of loop — Step 2]
Step3: VALUE: = STACK [TOP]
Step4: Display VALUE -
Step 5: Exit.

Scanned with CamScanner

For Example :
Evaluate the following Prefix Expression using stack :
P=(-,*,3,+,16,2,/,12,6

Symbol Scanned : | A (OP)YB
from Prefix Expression in Right Stack A S : (
: to Left Order
6 16
12 6,12
/ ') 12 6 12/6=2
2 ' . 2,2
T | 2,2,16
T 2,18 6 |2 16+2=18
3 2,18,3
+ 2,54 - |3 18 3*18=54
- 52 54 2 [54-2=%2

Finally the value in the Stackis 52.

Scanned with CamScanner

Queue

Queueis also an abstract data type or a linear data structure, just
like stack data structure, in which the first element is inserted from one
end called the REAR(also called rear), and the removal of existing
element takes place from the other end called as FRONT(also
called front).

This makes queue as FIFO(First in First Out) data structure, which
means that element inserted first will be removed first.

The process to add an element into queue is called Enqueue and the
process of removal of an element from queue is called Dequeue.

enqueue() operation dequeue() operation
REAR FRONT

enqueue() is the operation for adding an element into Queue.

dequeue() is the operation for removing an element from Queue .

QUEUE DATA STRUCTURE

Applications of Queue

Queue is used when things don’t have to be processed immediately, but
have to be processed in First In First Out order like Breadth First
Search. This property of Queue makes it also useful in following kind of
scenarios.

1) When a resource is shared among multiple consumers. Examples
include CPU scheduling, Disk Scheduling.

Scanned with CamScanner

2) When data is transferred asynchronously (data not necessarily
received at same rate as sent) between two processes. Examples
include 10 Buffers, pipes, file 10, etc.

Queue, as the name suggests is used whenever we need to manage any
group of objects in an order in which the first one coming in, also gets
out first while the others wait for their turn, like in the following
scenarios:

3) Serving requests on a single shared resource, like a printer, CPU
task scheduling etc.

4) In real life scenario, Call Center phone systems uses Queues to
hold people calling them in an order, until a service representative
is free.

5) Handling of interrupts in real-time systems. The interrupts are
handled in the same order as they arrive i.e First come first served.

Basic features of Queue

o Like stack, queue is also an ordered list of elements of similar data

types.
¢ Queue is a FIFO(First in First Out) structure.

¢ Once a new element is inserted into the Queue, all the elements
inserted before the new element in the queue must be removed, to
remove the new element.

e peek() function is oftenly used to return the value of first element
without dequeuing it.

Types of Queue:
1. Linear Queue
2. Circular Queue
3. Doubled Ended Queue (D-Queue)
4. Priority Queue

Implementation of Queue Data Structure

Queue can be implemented using an Array, Stack or Linked List.
The easiest way of implementing a queue is by using an Array.

Scanned with CamScanner

Initially the front (FRONT) and the rear (REAR) of the queue
points at the first index of the array (starting the index of array
from 0). As we add elements to the queue, the rear keeps on
moving afront, always pointing to the position where the next
element will be inserted, while the front remains at the first index.

[0 [[21 Bl [@ 81 6 [7]

/N

Head Tail

o) [11 [21 B8] 1[4 [5]1 [8] [7] Adding elements to
Queue

27

from Queue

\ ' removing element

Lt r —
19 | 17 | 7 1 19 17 7
< L -
7 ~ 7
Head Tail Head Tail
[A] [B]

When we remove an element from Queue, we can follow two
possible approaches (mentioned [A] and [B] in above diagram). In
[A] approach, we remove the element at front position, and then
one by one shift all the other elements in forward position.

In approach [B] we remove the element from front position and
then move front to the next position.

In approach [A] there is an overfront of shifting the elements one
position forward every time we remove the first element.

Scanned with CamScanner

In approach [B] there is no such overfront, but whenever we move
front one position afront, after removal of first element, the size on
Queue is reduced by one space each time.

Algorithm for ENQUEUE operation
1) Check if the queue is full or not.
2) If the queue is full, then print overflow error and exit the program.
3) If the queue is not full, then increment the rear and add the element.

Algorithm for DEQUEUE operation

1) Check if the queue is empty or not.

2) If the queue is empty, then print underflow error and exit the program.

3) If the queue is not empty, then print the element at the front and
increment the front.

Linear Queue Implementation

Insertion
Q insertion(Q, max, item, front, rear)
Step1: If (rear==max-1) then
Print “overflow”
Step2: Else
if(rear==-1 and front==-1)
set front=0
rear = O
Step 3: Else
rear=rear+1
[End of if]
Step 4: Q[rear]=item

Step 5: Stop

Scanned with CamScanner

Deletion
Q deletion(Q, max, item, front, rear)
Step1: Start
Step2: If (rear==-1 and front==-1)
Print “underflow”
End of if, exit.
Step3: item = Q[Front]
print “The deleted item is” item
Step 4: If (rear==front)
set rear =-1
front=-1
Step 5: else
front=front+1
[End of if]
Step 6: Stop
Display
Q display(Q, max, front, rear)
Step1: Start
Step2: If (front==-1 and rear==-1)
Print “no element for display”
Step3: else
Step 3.1: repeat for (i =front to rear by +1)
Step 3.1.1: print Q[i]
[End of for]

[End of if]
Step 6: Stop

Scanned with CamScanner

Complexity Analysis of Queue Operations

Just like Stack, in case of a Queue too, we know exactly, on which
position new element will be added and from where an element will be
removed, hence both these operations requires a single step.

Enqueue: O(1)
Dequeue: O(1)
Size: O(1)

What is a Circular Queue?

Before we start to learn about Circular queue, we should first
understand, why we need a circular queue, when we already have linear
queue data structure.

In a Linear queue, once the queue is completely full, it's not possible to
insert more elements. Even if we dequeue the queue to remove some of
the elements, until the queue is reset, no new elements can be inserted.

Queue is Full
21 33 4 12 67 78 93
Front Rear

When we dequeue any element to remove it from the queue, we are
actually moving the front of the queue forward, thereby reducing the
overall size of the queue. And we cannot insert new elements, because
the rear pointer is still at the end of the queue.

Queue is Full (Even after removing 2 elements)

4 12 67 78 93
Front Rear

Scanned with CamScanner

The only way is to reset the linear queue, for a fresh start.

Circular Queue is also a linear data structure, which follows the
principle of FIFO(First In First Out), but instead of ending the queue at
the last position, it again starts from the first position after the last,
hence making the queue behave like a circular data structure.

Basic features of Circular Queue

1. In case of a circular queue, front pointer will always point to the
front of the queue, and rear pointer will always point to the end of
the queue.

2. Initially, the front and the rear pointers will be pointing to the
same location, this would mean that the queue is empty.

Head
Tail

Initially the queue is
empty, as Head and Tail
are at same location

A simple circular queue
with size 8

3. New data is always added to the location pointed by
the rear pointer, and once the data is added, rear pointer is
incremented to point to the next available location.

Scanned with CamScanner

Head

D1 Tail

Tail always points to the
location where new data
will be inserted.

4. In a circular queue, data is not actually removed from the queue.
Only the front pointer is incremented by one position
when dequeue is executed. As the queue data is only the data
between front and rear, hence the data left outside is not a part of

the queue anymore, hence removed.

D1 although holds the same
position, but is not considered
to be in the queue anymore

D1 Head

Queue is only between Head
and Tail, hence data in queue

D4 =D2, D3, D4

Tail

5. The front and the rear pointer will get reinitialised to 0 every time
they reach the end of the queue.

Scanned with CamScanner

Tail gets reinitialised to 0
after location 8, same will Tail=0
happen to the Head /

D8

o =

6. Also, the front and the rear pointers can cross each other. In other
words, front pointer can be greater than the rear. Sounds odd?
This will happen when we dequeue the queue a couple of times and
the rear pointer gets reinitialised upon reaching the end of the

queue.
I D8 D9 l
Hoad = 5 B ' Tail =2
In such a situation the
value of the Head pointer
will be greater than the Tail
pointer
Going Round and Round

Another very important point is keeping the value of the rear and
the front pointer within the maximum queue size.

Scanned with CamScanner

In the diagrams above the queue has a size of 8, hence, the value
of rear and front pointers will always be between 0 and 7.

This can be controlled either by checking everytime
whether rear or front have reached the maxSize and then setting the
value 0 or, we have a better way, which is, for a value x if we divide it
by 8, the remainder will never be greater than 8, it will always be
between 0 and 0, which is exactly what we want.

So the formula to increment the front and rear pointers to make them go
round and roundover and again will be, front = (front+1) %
maxSize or rear = (rear+1) % maxSize

Application of Circular Quecue

Below we have some common real-world examples where circular
queues are used:

1. Computer controlled Traffic Signal System uses circular queue.

2, CPU scheduling and Memory management.

Implementation of Circular Queue

Below we have the implementation of a circular queue:

1. Initialize the queue, with size of the queue defined (maxSize),
and front and rear pointers.
2. enqueue: Check if the number of elements is equal to maxSize - 1:
o IfYes, then return Queue is full.
o IfNo, then add the new data element to the location
of rear pointer and increment the rear pointer.
3. dequeue: Check if the number of elements in the queue is zero:
o IfYes, then return Queue is empty.

o IfNo, then increment the front pointer.

Scanned with CamScanner

4. Finding the size:
o If, rear >= front, size = (rear - front) + 1

o But if, front > rear, then size = maxSize - (front - rear) + 1

Insertion

CQ insertion(CQ, max, item, front, rear)
Step 1: Start
Step2: If (front==0 and rear=max-1) or
(front==(rear+1)%max)
Print “overflow”
Step3: Else if (rear==-1 and front==-1)
set front=0, rear =0
Step 4: Else
rear=(rear+1)%max
[End of if]
Step 5: CQ[rear]=item
Step 6: Stop

Deletion

CQ deletion(CQ, max, item, front, rear)

Step 1: Start
Step2: If (front==-1 and rear==-1)
Print “underflow”

Step3: item =CQ[front]
Print “the deleted item is”, item
Step 4: if (rear==front)
rear=-1 front=-1
Step 5:else
front=(front+1)%max
[end of if]
Step 6: Stop

Scanned with CamScanner

Display

CQ display(CQ, max, item, front, rear)
Step 1: Start
Step2: If (front==-1 and rear==-1)
Print (“no element to display”)
Step3: else
step 3.1: if (rear >= front)
repeat (for i=front to rear by +1)
display CQIi]
step 3.2.1: else
repeat (for i=front to max-1 by+1)
display CQIi]
step 3.2.2: repeat (for i=0 to rear by +1)
display CQ[i]
Step 5: Stop

Scanned with CamScanner

Double Ended Queue

Double ended queue is a more generalized form of queue data
structure which allows insertion and removal of elements from
both the ends, i.e , front and back.

Thus, it does not follow FIFO rule (First In First Out).

POP BACK
6\ PUSH FRONT
S '~
REAR FRONT
A \
/ \é POP FRONT
PUSH BACK

There are two variants of a double-ended queue. They include:
Input restricted deque: In this dequeue,insertions can be done
only at one of the ends, while deletions can be done from both
ends.
Output restricted deque: In this dequeue,deletions can be done
only at one of the ends, while insertions can be done on both ends.
There are four basic operations in usage of Deque that we will
explore:

1. Insertion at rear end

2. Insertion at front end

3. Deletion at front end

4. Deletion at rear end

Scanned with CamScanner

Algorithm for Insertion at rear end

Step1: If (rear==max-1) then
Print “overflow”
Step2: Else
if(rear==-1 and front==-1)
set front=0
rear = O
Step 3: Else
rear=rear+i1
[End of if]
Step 4: DQ[rear]=item
Step 5: Stop

Algorithm for Insertion at front end

Step-1 :Start
Step-2: If (front==0 and rear==max-1) then
print “overflow”
Step-3 : else
front = front-1
DQ[front]=item;
[End of if]
Step-3 :Stop

Scanned with CamScanner

Algorithm for Deletion from front end

Step1: Start
Step2: If (rear==-1 and front==-1)
Print “underflow”
End of if, exit.
Step3: item = Q[Front]
print “The deleted item is” item
Step 4: If (rear==front)
set rear =-1
front=-1
Step 5: else
front=front+1
[End of if]
Step 6: Stop

Algorithm for Deletion from rear end

Step-1: Start
Step-2: If (front==-1 and rear==-1) then
print “underflow”
Step 3: item = DQ[rear]
print “the deleted item is”,item
Step 4: if (rear ==front)
set rear=-1
front=-1
Step5: else
rear =rear-1
[End of if]
Step 6: Stop

Scanned with CamScanner

priority queue

A priority queue is a special type of queue in which each element is
associated with a priority and is served according to its priority. If
elements with the same priority occur, they are served according to their
order in the queue.

Generally, the value of the element itself is considered for assigning the
priority.

For example, The element with the highest value is considered as the
highest priority element. However, in other cases, we can assume the

element with the lowest value as the highest priority element. In other
cases, we can set priorities according to our needs.

Scanned with CamScanner

