
 

Module-I Pages 
Kinematic fundamental: Basic Kinematic concepts and definitions, Degrees of 
freedom, Elementary Mechanism : Link, joint, Kinematic Pair, Classification of 
kinematic pairs, Kinematic chain and mechanism, Gru ebler’s criterion, 
Inversion of mechanism, Grashof criteria, Four bar linkage and their inversions, 
Single slider crank mechanism, Double slider crank mechanism and their 
inversion. Transmission angle and toggle position, Mechanical advantage. 
 
Kinematic Analysis : Graphical analysis of position, velocity and acceleration 
of four bar and Slider crank mechanisms. Instantaneous centre method, 
Aronhold-Kennedy Theorem, Rubbing velocity at a Pin-joint.Coriolis 
component of acceleration. 

 
 
 
 

2-74 

Module-II  
Gear and Gear Trains: Gear Terminology and definitions, Theory of shape and 
action of tooth properties and methods of generation of standard tooth profiles, 
Standard proportions, Force analysis, Interference and Undercutting, Methods 
for eliminating Interference, Minimum number of teeth to avoid interference. 
Analysis of mechanism Trains: Simple Train, Compound train, Reverted train, 
Epicyclic train and their applications. 

 
 

75-137 

Module-III  
Combined Static and Inertia Force Analysis: Inertia forces analysis, velocity 
and acceleration of slider crank mechanism by analytical method, engine force 
analysis -piston effort, force acting along the connecting rod, crank effort. 
dynamically equivalent system, compound pendulum, correction couple. 

 
138-166 

Module-IV  
Friction Effects: Screw jack, friction between pivot and collars, single, multi-
plate and cone clutches, anti friction bearing, film friction, friction circle, friction 
axis.  
 
Flexible Mechanical Elements: Belt, rope and chain drives, initial tension, 
effect of centrifugal tension on power transmission, maximum power 
transmission capacity, belt creep and slip. 

 
 

167-261 

Module-V  
Brakes & Dynamometers : Classification of brakes, Analysis of simple block, 
Band and internal expanding shoe brake, Braking of a vehicle. Absorption and 
transmission dynamometers, Prony brake, Rope brake dynamometer, belt 
transmission, epicyclic train, torsion dynamometer. 

 
262-299 



MODULE-I 

 

Kinematic fundamental: Basic Kinematic concepts and definitions, Degrees of 

freedom, Elementary Mechanism : Link, joint, Kinematic Pair, Classification of 

kinematic pairs, Kinematic chain and mechanism, Gru ebler’s criterion, Inversion 

of mechanism, Grashof criteria, Four bar linkage and their inversions, Single slider 

crank mechanism, Double slider crank mechanism and their inversion. 

Transmission angle and toggle position, Mechanical advantage. 

 

Kinematic Analysis : Graphical analysis of position, velocity and acceleration of 

four bar and Slider crank mechanisms. Instantaneous centre method, Aronhold-

Kennedy Theorem, Rubbing velocity at a Pin-joint.Coriolis component of 

acceleration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



94  �   Theory of Machines

5.1. Introduction

We have already discussed that a machine is a de-

vice which receives energy and transforms it into some use-

ful work. A machine consists of a number of parts or bodies.

In this chapter, we shall study the mechanisms of the various

parts or bodies from which the machine is assembled. This is

done by making one of the parts as fixed, and the relative

motion of other parts is determined with respect to the fixed

part.

5.2. Kinematic Link or Element

Each part of a machine, which moves relative to some

other part, is known as a kinematic link (or simply link) or

element. A link may consist of several parts, which are rig-

idly fastened together, so that they do not move relative to

one another. For example, in a reciprocating steam engine,

as shown in Fig. 5.1, piston, piston rod and crosshead consti-

tute one link ; connecting rod with big and small end bear-

ings constitute a second link ; crank, crank shaft and flywheel

a third link and the cylinder, engine frame and main bearings

a fourth link.
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Fig. 5.1. Reciprocating steam engine.

A link or element need not to be a

rigid body, but it must be a resistant body. A

body is said to be a resistant body if it is

capable of transmitting the required forces

with negligible deformation. Thus a link

should have the following two characteristics:

1. It should have relative motion, and

2. It must be a resistant body.

5.3. Types of Links

In order to transmit motion, the driver

and the follower may be connected by the following three types of links :

1. Rigid link. A rigid link is one which does not undergo any deformation while transmitting

motion. Strictly speaking, rigid links do not exist. However, as the deformation of a connecting rod,

crank etc. of a reciprocating steam engine is not appreciable, they can be considered as rigid links.

2. Flexible link. A flexible link is one which is partly deformed in a manner not to affect the

transmission of motion. For example, belts, ropes, chains and wires are flexible links and transmit

tensile forces only.

3. Fluid link. A fluid link is one which is formed by having a fluid in a receptacle and the

motion is transmitted through the fluid by pressure or compression only, as in the case of hydraulic

presses, jacks and brakes.

5.4. Structure

It is an assemblage of a number of resistant bodies (known as members) having no relative

motion between them and meant for carrying loads having straining action. A railway bridge, a roof

truss, machine frames etc., are the examples of a structure.

5.5. Difference Between a Machine and a Structure

The following differences between a machine and a structure are important from the subject

point of view :

1. The parts of a machine move relative to one another, whereas the members of a structure

do not move relative to one another.

2. A machine transforms the available energy into some useful work, whereas in a structure

no energy is transformed into useful work.

3. The links of a machine may transmit both power and motion, while the members of a

structure transmit forces only.

Piston and piston rod of an IC engine.
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5.6. Kinematic Pair

The two links or elements of a machine, when in contact with each other, are said to form a

pair. If the relative motion between them is completely or successfully constrained (i.e. in a definite

direction), the pair is known as kinematic pair.

First of all, let us discuss the various types of constrained motions.

5.7. Types of Constrained Motions

Following are the three types of constrained motions :

1. Completely constrained motion. When the motion between a pair is limited to a definite

direction irrespective of the direction of force applied, then the motion is said to be a completely

constrained motion. For example, the piston and cylinder (in a steam engine) form a pair and the

motion of the piston is limited to a definite direction (i.e. it will only reciprocate) relative to the

cylinder irrespective of the direction of motion of the crank, as shown in Fig. 5.1.

Fig. 5.2. Square bar in a square hole. Fig. 5.3. Shaft with collars in a circular hole.

The motion of a square bar in a square hole, as shown in Fig. 5.2, and the motion of a shaft

with collars at each end in a circular hole, as shown in Fig. 5.3, are also examples of completely

constrained motion.

2. Incompletely constrained motion. When the motion between a pair can take place in more

than one direction, then the motion is called an incompletely constrained motion. The change in the

direction of impressed force may alter the direction of relative motion between the pair. A circular bar

or shaft in a circular hole, as shown in Fig. 5.4, is an example of an incompletely constrained motion

as it may either rotate or slide in a hole. These both motions have no relationship with the other.

Fig. 5.4. Shaft in a circular hole. Fig. 5.5. Shaft in a foot step bearing.

3. Successfully constrained motion. When the motion between the elements, forming a pair,is

such that the constrained motion is not completed by itself, but by some other means, then the motion

is said to be successfully constrained motion. Consider a shaft in a foot-step bearing as shown in Fig.

5.5. The shaft may rotate in a bearing or it may move upwards. This is a case of incompletely con-

strained motion. But if the load is placed on the shaft to prevent axial upward movement of the shaft,

then the motion of the pair is said to be successfully constrained motion. The motion of an I.C. engine
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valve (these are kept on their seat by a spring) and the piston reciprocating inside an engine cylinder

are also the examples of successfully constrained motion.

5.8. Classification of Kinematic Pairs

The kinematic pairs may be classified according to the following considerations :

1. According to the type of relative motion between the elements. The kinematic pairs ac-

cording to type of relative motion between the elements may be classified as discussed below:

(a) Sliding pair. When the two elements of a pair are connected in such a way that one can

only slide relative to the other, the pair is known as a sliding pair. The piston and cylinder, cross-head

and guides of a reciprocating steam engine, ram and its guides in shaper, tail stock on the lathe bed

etc. are the examples of a sliding pair. A little consideration will show, that a sliding pair has a

completely constrained motion.

(b)  Turning pair. When the two elements of a pair are connected in such a way that one can

only turn or revolve about a fixed axis of another link, the pair is known as turning pair. A shaft with

collars at both ends fitted into a circular hole, the crankshaft in a journal bearing in an engine, lathe

spindle supported in head stock, cycle wheels turning over their axles etc. are the examples of a

turning pair. A turning pair also has a completely constrained motion.

(c)  Rolling pair. When the two elements of a pair are connected in such a way that one rolls

over another fixed link, the pair is known as rolling pair. Ball and roller bearings are examples of

rolling pair.

(d) Screw pair. When the two elements of a pair are connected in such a way that one element

can turn about the other by screw threads, the pair is known as screw pair. The lead screw of a lathe

with nut, and bolt with a nut are examples of a screw pair.

(e) Spherical pair. When the two elements of a pair are connected in such a way that one

element (with spherical shape) turns or swivels about the other fixed element, the pair formed is

called a spherical pair. The ball and socket joint, attachment of a car mirror, pen stand etc., are the

examples of a spherical pair.

2.  According to the type of contact between the elements. The kinematic pairs according to

the type of contact between the elements may be classified as discussed below :

(a) Lower pair. When the two elements of a pair have a surface contact when relative motion

takes place and the surface of one element slides over the surface of the other, the pair formed is

known as lower pair. It will be seen that sliding pairs, turning pairs and screw pairs form lower pairs.

(b) Higher pair. When the two elements of a pair have a line or point contact when relative

motion takes place and the motion between the two elements is partly turning and partly sliding,then

the pair is known as higher pair. A pair of friction discs, toothed gearing, belt and rope drives, ball and

roller bearings and cam and follower are the examples of higher pairs.

3. According to the type of closure. The kinematic pairs according to the type of closure

between the elements may be classified as discussed below :

(a) Self closed pair. When the two elements of a pair are connected together mechanically in

such a way that only required kind of relative motion occurs, it is then known as self closed pair. The

lower pairs are self closed pair.

(b) Force - closed pair. When the two elements of a pair are not connected mechanically but

are kept in contact by the action of external forces, the pair is said to be a force-closed pair. The cam

and follower is an example of force closed pair, as it is kept in contact by the forces exerted by spring

and gravity.
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Fig. 5.6. Arrangement of three links.

5.9. Kinematic Chain

When the kinematic pairs are

coupled in such a way that the last link

is joined to the first link to transmit

definite motion (i.e. completely or

successfully constrained motion), it is

called a kinematic chain. In other

words, a kinematic chain may be de-

fined as a combination of kinematic

pairs, joined in such a way that each

link forms a part of two pairs and the

relative motion between the links or

elements is completely or successfully

constrained. For example, the crank-

shaft of an engine forms a kinematic

pair with the bearings which are fixed

in a pair, the connecting rod with the

crank forms a second kinematic pair,

the piston with the connecting rod forms a third pair and the piston with the cylinder forms a fourth

pair. The total combination of these links is a kinematic chain.

If each link is assumed to form two pairs with two adjacent links, then the relation between

the number of pairs ( p ) forming a kinematic chain and the number of links ( l ) may be expressed in

the form of an equation :

l = 2 p – 4 . . . (i)

Since in a kinematic chain each link forms a part of two pairs, therefore there will be as many

links as the number of pairs.

Another relation between the number of links (l) and the number of joints ( j ) which

constitute a kinematic chain is given by the expression :

3
2

2
j l= − ...(ii)

The equations (i) and (ii) are applicable only to kinematic chains, in which lower pairs are

used. These equations may also be applied to kinematic chains, in which higher pairs are used. In that

case each higher pair may be taken as equivalent to two lower pairs with an additional element or link.

Let us apply the above equations to the following cases to determine whether each of them is

a kinematic chain or not.

1. Consider the arrangement of three links A B, BC and CA with pin joints at A , B and C as

shown in Fig. 5.6. In this case,

Number of links, l = 3

Number of pairs, p = 3

and       number of joints,  j = 3

From equation (i),                l = 2p – 4

or 3 =  2 × 3 – 4 = 2

i.e. L.H.S. > R.H.S.

Now from equation (ii),

3
2

2
j l= − or

3
3 3 2 2.5

2
= × − =

Lawn-mover is a combination of kinematic links.
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i.e. L.H.S.  > R.H.S.

Since the arrangement of three links, as shown in Fig. 5.6, does not satisfy the equations (i)

and (ii) and the left hand side is greater than the right hand side, therefore it is not a kinematic chain

and hence no relative motion is possible. Such type of chain is called locked chain and forms a rigid

frame or structure which is used in bridges and trusses.

2. Consider the arrangement of four links A B, BC, CD and DA as shown in Fig. 5.7. In this case

l = 4, p = 4, and j = 4

From equation (i), l = 2 p – 4

4 = 2 × 4 – 4 = 4

i.e. L.H.S. = R.H.S.

From equation (ii),
3

2
2

j l= −

3
4 4 2 4

2
= × − =

i.e.                       L.H.S. = R.H.S.

Since the arrangement of four links, as shown in Fig. 5.7, satisfy the equations (i) and (ii),

therefore it is a kinematic chain of one degree of freedom.

A chain in which a single link such as AD in Fig. 5.7 is sufficient to define the position of all

other links, it is then called a kinematic chain of one degree of freedom.

A little consideration will show that in Fig. 5.7, if a definite displacement (say θ) is given to

the link AD, keeping the link A B fixed, then the resulting displacements of the remaining two links BC

and CD are also perfectly definite. Thus we see that in a four bar chain, the relative motion is com-

pletely constrained. Hence it may be called as a constrained kinematic chain, and it is the basis of all

machines.

3. Consider an arrangement of five links, as shown in Fig. 5.8. In this case,

l = 5, p = 5, and j = 5

From equation (i),

l = 2 p – 4 or 5 = 2 × 5 – 4 = 6

i.e. L.H.S. < R.H.S.

From equation (ii),

3
2

2
j l= − or  

3
5 5 2 5.5

2
= × − =

i.e. L.H.S. < R.H.S.

Since the arrangement of five links, as shown in Fig. 5.8 does not satisfy the equations and

left hand side is less than right hand side, therefore it is not a kinematic chain. Such a type of chain is

called unconstrained chain i.e. the relative motion is not completely constrained. This type of chain

is of little practical importance.

4. Consider an arrangement of six links, as shown in Fig. 5.9. This chain is formed by adding

two more links in such a way that these two links form a pair with the existing links as well as form

themselves a pair. In this case

l = 6, p = 5, and   j = 7

Fig. 5.7. Arrangement of four links.

Fig. 5.8. Arrangement of five links.
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Fig. 5.11. Kinematic chain having

binary and ternary joints.

From equation (i),

l = 2 p – 4       or 6 = 2 × 5 – 4 = 6

i.e. L.H.S. = R.H.S.

From equation (ii),

3
2

2
j l= − or

3
7 6 2 7

2
= × − =

i.e. L.H.S. = R.H.S.

Since the arrangement of six links, as shown in Fig.

5.9, satisfies the equations (i.e. left hand side is equal to right

hand side), therefore it is a kinematic chain.

Note : A chain having more than four links is known as compound kinematic chain.

5.10. Types of Joints in a Chain

The following types of joints are usually found in a chain :

1. Binary joint. When two links are joined at the same connection, the joint is known as

binary joint. For example, a chain as shown in Fig. 5.10, has four links and four binary joins at A , B,

C and D.

In order to determine the nature of chain, i.e. whether

the chain is a locked chain (or structure) or kinematic chain

or unconstrained chain, the following relation between the

number of links and the number of binary joints, as given by

A.W. Klein, may be used :

3
2

2 2

h
j l+ = −                            ... (i)

where j = Number of binary joints,

h = Number of higher pairs, and

l = Number of links.

When h = 0, the equation (i), may be written as

3
2

2
j l= − . . . (ii)

Applying this equation to a chain, as shown in Fig. 5.10, where l = 4 and j = 4, we have

3
4 4 2 4

2
= × − =

Since the left hand side is equal to the right hand side, therefore the chain is a kinematic chain

or constrained chain.

2. Ternary joint.  When three links are joined at the

same connection, the joint is known as ternary joint. It is equiva-

lent to two binary joints as one of the three links joined carry

the pin for the other two links. For example, a chain, as shown

in Fig. 5.11, has six links. It has three binary joints at A , B and

D and two ternary joints at C and E. Since one ternary joint is

equivalent to two binary joints, therefore equivalent binary joints

in a chain, as shown in Fig. 5.11, are 3 + 2 × 2 = 7

Let us now determine whether this chain is a kinematic

chain or not. We know that l = 6 and j = 7, therefore from

Fig. 5.10. Kinematic chain with all

binary joints.

Fig. 5.9. Arrangement of six links.
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equation (ii),

3
2

2
j l= −

or
3

7 6 2 7
2

= × − =

Since left hand side is equal to right hand side, therefore the chain, as shown in Fig. 5.11, is

a kinematic chain or constrained chain.

3. Quaternary joint. When four links are joined at the same connection, the joint is called a

quaternary joint. It is equivalent to three binary joints. In general, when l number of links are joined

at the same connection, the joint is equivalent to (l – 1) binary joints.

For example consider a chain having eleven links, as shown in Fig. 5.12 (a). It has one binary

joint at D, four ternary joints at A, B, E and F, and two quaternary joints at C and G. Since one

quaternary joint is equivalent to three binary joints and one ternary joint is equal to two binary joints,

therefore total number of binary joints in a chain, as shown in Fig. 5.12 (a), are

(a) Looked chain having binary, ternary (b) Kinematic chain having binary

and quaternary joints. and ternary joints.

Fig. 5.12

1 + 4 × 2 + 2 × 3 = 15

Let us now determine whether the chain, as shown in Fig. 5.12 (a), is a kinematic chain or

not. We know that l = 11 and j = 15. We know that,

3
2,

2
j l= − or

3
15 11 2 14.5,

2
= × − =  i.e., L.H.S. > R.H.S.

Since the left hand side is greater than right hand side, therefore the chain, as shown in Fig.

5.12 (a) , is not a kinematic chain. We have discussed in Art 5.9 , that such a type of chain is called

locked chain and forms a rigid frame or structure.

If the link CG is removed, as shown in Fig. 5.12 (b), it has ten links and has one binary joint

at D and six ternary joints at A, B, C, E, F and G.

Therefore total number of binary joints are 1 + 2 × 6 = 13. We know that

3
2,

2
j l= − or

3
13 10 2 13

2
= × − = , i.e. L.H.S. = R.H.S.

Since left hand side is equal to right hand side, therefore the chain, as shown in Fig. 5.12 (b),

is a kinematic chain or constrained chain.

5.11. Mechanism

When one of the links of a kinematic chain is fixed, the chain is known as mechanism. It may

be used for transmitting or transforming motion e.g. engine indicators, typewriter etc.
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* The differential of an automobile requires that the angular velocity of two elements be fixed in order to

know the velocity of the remaining elements. The differential mechanism is thus said to have two degrees

of freedom. Many computing mechanisms have two or more degrees of freedom.

A mechanism with four links is known as simple mechanism, and the mechanism with more

than four links is known as compound mechanism. When a mechanism is required to transmit power

or to do some particular type of work, it then becomes a machine. In such cases, the various links or

elements have to be designed to withstand the forces (both static and kinetic) safely.

A little consideration will show that a mechanism may be regarded as a machine in which

each part is reduced to the simplest form to transmit the required motion.

5.12. Number of Degrees of Freedom for Plane Mechanisms

In the design or analysis of a mechanism, one of the most important concern is the number of

degrees of freedom (also called movability) of the mechanism. It is defined as the number of input

parameters (usually pair variables) which must be independently controlled in order to bring the

mechanism into a useful engineering purpose. It is possible to determine the number of degrees of

freedom of a mechanism directly from the number of links and the number and types of joints which

it includes.

Consider a four bar chain, as shown in Fig. 5.13 (a). A little consideration will show that only

one variable such as θ is needed to define the relative positions of all the links. In other words, we say

that the number of degrees of freedom of a four bar chain is one. Now, let us consider a five bar chain,

as shown in Fig. 5.13 (b). In this case two variables such as θ
1
 and θ

2
 are needed to define completely

the relative positions of all the links. Thus, we say that the number of degrees of freedom is * two.

In order to develop the relationship in general, consider two links A B and CD in a plane

motion as shown in Fig. 5.14 (a).

Fig. 5.14. Links in a plane motion.

The link AB with co-ordinate system OXY is taken as the reference link (or fixed link). The

position of point P on the moving link CD can be completely specified by the three variables, i.e. the

(a) Four bar chain. (b) Five bar chain.

Fig. 5.13
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co-ordinates of the point P denoted by x and y and the inclination θ of the link CD with X-axis or link

A B. In other words, we can say that each link of a mechanism has three degrees of freedom before it

is connected to any other link. But when the link CD is connected to the link A B by a turning pair at

A , as shown in Fig. 5.14 (b), the position of link CD is now determined by a single variable θ and thus

has one degree of freedom.

From above, we see that when a link is connected to a fixed link by a turning pair (i.e. lower

pair), two degrees of freedom are destroyed. This may be clearly understood from Fig. 5.15, in which

the resulting four bar mechanism has one degree of freedom (i.e. n = 1 ).

Fig. 5.15. Four bar mechanism.

Now let us consider a plane mechanism with l number of links. Since in a mechanism, one of

the links is to be fixed, therefore the number of movable links will be (l – 1) and thus the total number

of degrees of freedom will be 3 (l – 1) before they are connected to any other link. In general, a

mechanism with l number of links connected by j number of binary joints or lower pairs (i.e. single

degree of freedom pairs) and h number of higher pairs (i.e. two degree of freedom pairs), then the

number of degrees of freedom of a mechanism is given by

n = 3 (l – 1) – 2 j – h ... (i)

This equation is called Kutzbach criterion for the movability of a mechanism having plane

motion.

If there are no two degree of freedom pairs (i.e. higher pairs), then h = 0. Substituting

h = 0 in equation (i), we have

n = 3 (l – 1) – 2 j ... (ii)

5.13. Application of Kutzbach Criterion to Plane Mechanisms

We have discussed in the previous article that Kutzbach criterion for determining the number

of degrees of freedom or movability (n) of a plane mechanism is

n = 3 (l – 1) – 2 j – h

Fig. 5.16. Plane mechanisms.

The number of degrees of freedom or movability (n) for some simple mechanisms having no

higher pair (i.e. h = 0), as shown in Fig. 5.16, are determined as follows :
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1. The mechanism, as shown in Fig. 5.16 (a), has three links and three binary joints, i.e.

l = 3 and j = 3.

∴ n = 3 (3 – 1) – 2 × 3 = 0

2. The mechanism, as shown in Fig. 5.16 (b), has four links and four binary joints, i.e.

l = 4 and j = 4.

∴ n = 3 (4 – 1) – 2 × 4 = 1

3. The mechanism, as shown in Fig. 5.16 (c), has five links and five binary joints, i.e.

l = 5, and j = 5.

∴ n = 3 (5 – 1) – 2 × 5 = 2

4. The mechanism, as shown in Fig. 5.16 (d), has five links and six equivalent binary joints

(because there are two binary joints at B  and D, and two ternary joints at A  and C), i.e.

l = 5 and j = 6.

∴ n = 3 (5 – 1) – 2 × 6 = 0

5. The mechanism, as shown in Fig. 5.16 (e), has six links and eight equivalent binary joints

(because there are four ternary joints at A, B, C and D), i.e. l = 6 and j = 8.

∴ n = 3 (6 – 1) – 2 × 8 = – 1

It may be noted that

(a) When n = 0, then the mechanism forms a structure and no relative motion between the

links is possible, as shown in Fig. 5.16 (a) and (d).

(b) When n = 1, then the mechanism can be driven by a single input motion, as shown in Fig.

5.16 (b).

(c) When n = 2, then two separate input motions are necessary to produce constrained

motion for the mechanism, as shown in Fig. 5.16 (c).

(d) When n =  – 1 or less, then there are redundant constraints in the chain and it forms a

statically indeterminate structure, as shown in Fig. 5.16 (e).

The application of Kutzbach’s criterion applied to mechanisms with a higher pair or two

degree of freedom joints is shown in Fig. 5.17.

Fig. 5.17. Mechanism with a higher pair.

In Fig. 5.17 (a), there are three links, two binary joints and one higher pair, i.e. l = 3, j = 2 and h = 1.

  ∴ n = 3 (3 – 1) – 2 × 2 – 1 = 1

In Fig. 5.17 (b), there are four links, three binary joints and one higher pair, i.e. l = 4,

j = 3 and h = 1

∴ n = 3 (4 – 1) – 2 × 3 – 1 = 2

Here it has been assumed that the slipping is possible between the links (i.e. between the

wheel and the fixed link). However if the friction at the contact is high enough to prevent slipping, the

joint will be counted as one degree of freedom pair, because only one relative motion will be possible

between the links.
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5.14. Grubler’s Criterion for Plane Mechanisms

The Grubler’s criterion applies to mechanisms with only single degree of freedom joints

where the overall movability of the mechanism is unity. Substituting n = 1 and h = 0 in Kutzbach

equation, we have

1 = 3 (l – 1) – 2 j or 3l – 2j – 4 = 0

This equation is known as the Grubler's criterion for plane mechanisms with constrained

motion.

A little consideration will show that a plane mechanism with a movability of 1 and only

single degree of freedom joints can not have odd number of links. The simplest possible machanisms

of this type are a four bar mechanism and a slider-crank mechanism in which l = 4 and j = 4.

5.15. Inversion of Mechanism

We have already discussed that when one of links is fixed in a kinematic chain, it is called a

mechanism. So we can obtain as many mechanisms as the number of links in a kinematic chain by

fixing, in turn, different links in a kinematic chain. This method of obtaining different mechanisms by

fixing different links in a kinematic chain, is known as inversion of the mechanism.

It may be noted that the relative motions between the various links is not changed in any

manner through the process of inversion, but their absolute motions (those measured with respect to

the fixed link) may be changed drastically.

Note: The part of a mechanism which initially moves with respect to the frame or fixed link is called driver and

that part of the mechanism to which motion is transmitted is called follower. Most of the mechanisms are

reversible, so that same link can play the role of a driver and follower at different times. For example, in a

reciprocating steam engine, the piston is the driver and flywheel is a follower while in a reciprocating air

compressor, the flywheel is a driver.

5.16. Types of Kinematic Chains

The most important kinematic chains are those which consist of four lower pairs, each pair

being a sliding pair or a turning pair. The following three types of kinematic chains with four lower

pairs are important from the subject point of view :

1. Four bar chain or quadric cyclic chain,

2. Single slider crank chain, and

3. Double slider crank chain.

These kinematic chains are discussed, in detail, in the following articles.

5.17. Four Bar Chain or Quadric Cycle Chain

We have already discussed that the kinematic chain is a combination of four or more

kinematic pairs, such that the relative motion between the links or elements is completely constrained.

The simplest and the basic kinematic chain is a four bar chain or quad-

ric cycle chain, as shown in Fig. 5.18. It consists of four links, each of

them forms a turning pair at A, B, C and D. The four links may be of

different lengths. According to Grashof ’s law for a four bar mecha-

nism, the sum of the shortest and longest link lengths should not be

greater than the sum of the remaining two link lengths if there is to be

continuous relative motion between the two links.

A very important consideration in designing a mechanism is to

ensure that the input crank makes a complete revolution relative to the Fig. 5.18. Four bar chain.
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* Refer Chapter 9, Art. 9.6

other links. The mechanism in which no link makes a complete revolution will not be useful. In a four

bar chain, one of the links, in particular the shortest link, will make a complete revolution relative to

the other three links, if it satisfies the Grashof ’s law. Such a link is known as crank or driver. In Fig.

5.18, AD (link 4 ) is a crank. The link BC (link 2) which makes a partial rotation or oscillates is known

as lever or rocker or follower and the link CD (link 3) which connects the crank and lever is called

connecting rod or coupler. The fixed link A B (link 1) is known as frame of the mechanism.

When the crank (link 4) is the driver, the mechanism is transforming rotary motion into

oscillating motion.

5.18. Inversions of Four Bar Chain

Though there are many inversions of the four bar

chain, yet the following are important from the subject

point of view :

1. Beam engine (crank and lever mechanism).

A part of the mechanism of a beam engine (also known as

crank and lever mechanism) which consists of four links,

is shown in Fig. 5.19. In this mechanism, when the crank

rotates about the fixed centre A , the lever oscillates about

a fixed centre D. The end E of the lever CDE is

connected to a piston rod which reciprocates due to the

rotation of the crank. In other words, the purpose of this

mechanism is to convert rotary motion into reciprocating

motion.

Fig. 5.20. Coupling rod of a locomotive.Fig. 5.19. Beam engine.

2. Coupling rod of a locomotive (Double crank mechanism). The mechanism of a coupling

rod of a locomotive (also known as double crank mechanism) which consists of four links, is shown

in Fig. 5.20.

In this mechanism, the links AD and BC (having equal length) act as cranks and are con-

nected to the respective wheels. The link CD acts as a coupling rod and the link A B is fixed in order

to maintain a constant centre to centre distance between them. This mechanism is meant for transmit-

ting rotary motion from one wheel to the other wheel.

3. Watt’s indicator mechanism (Double lever mechanism). A *Watt’s indicator mechanism

(also known as Watt's straight line mechanism or double lever mechanism) which consists of four
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links, is shown in Fig. 5.21. The four links are : fixed link

at A , link AC, link CE and link BFD. It may be noted that

BF and FD form one link because these two parts have no

relative motion between them. The links CE and BFD act

as levers. The displacement of the link BFD is directly

proportional to the pressure of gas or steam which acts on

the indicator plunger. On any small displacement of the

mechanism, the tracing point E at the end of the link CE

traces out approximately a straight line.

The initial position of the mechanism is shown in

Fig. 5.21 by full lines whereas the dotted lines show the

position of the mechanism when the gas or steam pressure

acts on the indicator plunger.

5.19. Single Slider Crank Chain

A single slider crank chain is a modification of the basic four bar chain. It consist of one

sliding pair and three turning pairs. It is,usually, found in reciprocating steam engine mechanism.

This type of mechanism converts rotary motion into reciprocating motion and vice versa.

In a single slider crank chain, as shown in Fig. 5.22, the links 1 and 2, links 2 and 3, and links

3 and 4 form three turning pairs while the links 4 and 1 form a sliding pair.

Fig. 5.22. Single slider crank chain.

The link 1 corresponds to the frame of the engine, which is fixed. The link 2 corresponds to

the crank ; link 3 corresponds to the connecting rod and link 4 corresponds to cross-head. As the

crank rotates, the cross-head reciprocates in the guides and thus the piston reciprocates in the

cylinder.

5.20. Inversions of Single Slider Crank Chain

We have seen in the previous article that a single slider crank chain is a four-link mechanism.

We know that by fixing, in turn, different links in a kinematic chain, an inversion is obtained and

we can obtain as many mechanisms as the links in a kinematic chain. It is thus obvious, that four

inversions of a single slider crank chain are possible. These inversions are found in the following

mechanisms.

1. Pendulum pump or Bull engine. In this mechanism, the inversion is obtained by fixing the

cylinder or link 4 (i.e. sliding pair), as shown in Fig. 5.23. In this case, when the crank (link 2) rotates,

the connecting rod (link 3) oscillates about a pin pivoted to the fixed link 4 at A  and the piston

attached to the piston rod (link 1) reciprocates. The duplex pump which is used to supply feed water

to boilers have two pistons attached to link 1, as shown in Fig. 5.23.

Fig. 5.21. Watt’s indicator mechanism.
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Fig. 5.23. Pendulum pump. Fig. 5.24. Oscillating cylinder engine.

2. Oscillating cylinder engine. The ar-

rangement of oscillating cylinder engine mecha-

nism, as shown in Fig. 5.24, is used to convert

reciprocating motion into rotary motion. In this

mechanism, the link 3 forming the turning pair is

fixed. The link 3 corresponds to the connecting

rod of a reciprocating steam engine mechanism.

When the crank (link 2) rotates, the piston at-

tached to piston rod (link 1) reciprocates and the

cylinder (link 4) oscillates about a pin pivoted to

the fixed link at A.

3. Rotary internal combustion engine

or Gnome engine. Sometimes back, rotary in-

ternal combustion engines were used in aviation.

But now-a-days gas turbines are used in its place.

It consists of seven cylinders in one plane and

all revolves about fixed centre D, as shown in

Fig. 5.25, while the crank (link 2) is fixed. In

this mechanism, when the connecting rod (link

4) rotates, the piston (link 3) reciprocates inside

the cylinders forming link 1.

Fig. 5.25. Rotary internal combustion engine.

4. Crank and slotted lever quick return motion mechanism. This mechanism is mostly used

in shaping machines, slotting machines and in rotary internal combustion engines.

Rotary engine
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In this mechanism, the link AC (i.e. link 3) forming the turning pair is fixed, as shown in Fig.

5.26. The link 3 corresponds to the connecting rod of a reciprocating steam engine. The driving crank

CB revolves with uniform angular speed about the fixed centre C. A sliding block attached to the crank

pin at B slides along the slotted bar AP and thus causes AP to oscillate about the pivoted point A . A

short link PR transmits the motion from AP to the ram which carries the tool and reciprocates along the

line of stroke R
1
R

2
. The line of stroke of the ram (i.e. R

1
R

2
) is perpendicular to AC produced.

Fig. 5.26. Crank and slotted lever quick return motion mechanism.

In the extreme positions, AP
1
 and AP

2
 are tangential to the circle

and the cutting tool is at the end of the stroke. The forward or cutting

stroke occurs when the crank rotates from the position CB
1
 to CB

2
 (or

through an angle β) in the clockwise direction. The return stroke occurs

when the crank rotates from the position CB
2
 to CB

1
 (or through angle α)

in the clockwise direction. Since the crank has uniform angular speed,

therefore,

Time of cutting stroke 360
or

Time of return stroke 360

° − αβ β= =
α ° − β α

Since the tool travels a distance of R
1
 R

2
 during cutting and return

stroke, therefore travel of the tool or length of stroke

 = R
1
R

2
 = P

1
P

2
  = 2P

1
Q = 2AP

1
 sin ∠  P

1
 AQ

 = ( )12 sin 90 2 cos
2 2

AP AP
α α° − =

1..... ( )AP AP=�

  
12

CB
AP

AC
= × ... 1cos

2

CB

AC

 α =  
�

  2
CB

AP
AC

= × ... 1( )CB CB=�

Note: From Fig. 5.26, we see that the angle β made by the forward or cutting stroke is greater than the angle α
described by the return stroke. Since the crank rotates with uniform angular speed, therefore the return stroke is

completed within shorter time. Thus it is called quick return motion mechanism.

The Shaping Machine
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5. Whitworth quick return motion mechanism. This mechanism is mostly used in shaping

and slotting machines. In this mechanism, the link CD (link 2) forming the turning pair is fixed, as

shown in Fig. 5.27. The link 2 corresponds to a crank in a reciprocating steam engine. The driving

crank CA (link 3) rotates at a uniform angular speed. The slider (link 4) attached to the crank pin at A

slides along the slotted bar PA  (link 1) which oscillates at a pivoted point D. The connecting rod PR

carries the ram at R to which a cutting tool is fixed. The motion of the tool is constrained along the

line RD produced, i.e. along a line passing through D and perpendicular to CD.

Fig. 5.27. Whitworth quick return motion mechanism.

When the driving crank CA moves from the position CA
1
 to CA

2
 (or the link DP from the

position DP
1
 to DP

2
) through an angle α in the clockwise direction, the tool moves from the left hand

end of its stroke to the right hand end through a distance 2 PD.

Now when the driving crank moves from the position CA
2
 to CA

1
 (or the link DP from DP

2
 to

DP
1
 ) through an angle β in the clockwise direction, the tool moves back from right hand end of its

stroke to the left hand end.

A little consideration will show that the time taken during the left to right movement of the

ram (i.e. during forward or cutting stroke) will be equal to the time taken by the driving crank to move

from CA
1
 to CA

2
. Similarly, the time taken during the right to left movement of the ram (or during the

idle or return stroke) will be equal to the time taken by the driving crank to move from CA
2
 to CA

1
.

Since the crank link CA rotates at uniform angular velocity therefore time taken during the

cutting stroke (or forward stroke) is more than the time taken during the return stroke. In other words,

the mean speed of the ram during cutting stroke is less than the mean speed during the return stroke.

The ratio between the time taken during the cutting and return strokes is given by

Time of cutting stroke 360
or

Time of return stroke 360

° − βα α= =
β ° − α β

Note. In order to find the length of effective stroke R
1
 R

2
, mark P

1
 R

1
 = P

2
 R

2
 = PR. The length of effective

stroke is also equal to 2 PD.

Example 5.1. A crank and slotted lever mechanism used in a shaper has a centre distance of

300 mm between the centre of oscillation of the slotted lever and the centre of rotation of the crank.

The radius of the crank is 120 mm. Find the ratio of the time of cutting to the time of return stroke.

Solution. Given : AC = 300 mm ; CB
1
 = 120 mm

The extreme positions of the crank are shown in Fig. 5.28. We know that
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Fig. 5.29

Fig. 5.28

    1sin sin (90 / 2)CAB∠ = ° −α

    
1 120

0.4
300

CB

AC
= = =

∴     1 90 / 2CAB∠ = ° − α

    = sin–1 0.4 = 23.6°

or   α / 2 = 90° – 23.6° = 66.4°

and    α = 2 × 66.4 = 132.8°

We know that

Time of cutting stroke 360 132.8360

Time of return stroke 132.8

°− °° − α= =
α ° = 1.72 Ans.

Example 5.2. In a crank and slotted lever quick return motion mechanism, the distance

between the fixed centres is 240 mm and the length of the driving crank is 120 mm. Find the inclina-

tion of the slotted bar with the vertical in the extreme position and the time ratio of cutting stroke to

the return stroke.

If the length of the slotted bar is 450 mm, find the length of the stroke if the line of stroke

passes through the extreme positions of the free end of the lever.

Solution. Given : AC = 240 mm ; CB
1
 = 120 mm ; AP

1
 = 450 mm

Inclination of the slotted bar with the vertical

Let ∠ CAB
1
 = Inclination of the slotted bar with the vertical.

The extreme positions of the crank are

shown in Fig. 5.29. We know that

( )1sin sin 90
2

CAB
α∠ = ° −

                     
1 120

0.5
240

B C

AC
= = =

∴  1 90
2

CAB
α∠ = ° −

1sin 0.5 30−= = °  Ans.

Time ratio of cutting stroke to the return stroke

We know that

                90° – α / 2 = 30°

∴                      α/ 2 = 90° – 30° = 60°

or  α = 2 × 60° = 120°

∴
Time of cutting stroke 360 360 120

Time of return stroke 120

°−α ° − °= =
α °  = 2 Ans.
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Length of the stroke

We know that length of the stroke,

R
1
R

2
 = P

1
P

2
 =  2 P

1
Q = 2 AP

1
 sin (90° – α / 2)

= 2 × 450 sin (90°– 60°) = 900 × 0.5 = 450 mm Ans.

Example 5.3. Fig. 5.30 shows the lay out of a quick return mechanism of the oscillating link

type, for a special purpose machine. The driving crank BC is 30 mm long and time ratio of the

working stroke to the return stroke is to be 1.7. If the length of the working stroke of R is 120 mm,

determine the dimensions of AC and AP.

Solution.  Given : BC = 30 mm ; R
1
R

2
 = 120 mm ; Time ratio of working stroke to the return

stroke = 1.7

                            Fig. 5.30                                                               Fig. 5.31

We know that

Time of working stroke 360

Time of return stroke

− α=
α

or
360

1.7
− α=

α
∴ α  = 133.3° or α / 2 = 66.65°

The extreme positions of the crank are shown in Fig. 5.31. From right angled triangle A B
1
C,

we find that

sin (90° – α/2) = 
1B C

AC
or 1

sin (90 / 2) cos / 2

B C BC
AC = =

° − α α
... (∵ B

1
C = BC)

∴ 30 30
75.7

cos66.65 0.3963
AC = = =

°
mm Ans.

We know that length of stroke,

R
1
R

2
 = P

1
P

2
 = 2P

1
Q = 2 AP

1
 sin (90° – α / 2) = 2 AP

1
 cos α / 2

120 = 2 AP cos 66.65° = 0.7926 AP ... (∵ AP
1
 = AP)

∴ AP = 120 / 0.7926 = 151.4 mm Ans.

Example 5.4. In a Whitworth quick return motion mechanism, as shown in Fig. 5.32, the

distance between the fixed centers is 50 mm and the length of the driving crank is 75 mm. The length

of the slotted lever is 150 mm and the length of the connecting rod is 135 mm. Find the ratio of the

time of cutting stroke to the time of return stroke and also the effective stroke.
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Solution.  Given : CD = 50 mm ; CA = 75 mm ; PA  = 150 mm ; PR = 135 mm

Fig. 5.32 Fig. 5.33

The extreme positions of the driving crank are shown in Fig. 5.33. From the geometry of the

figure,

2

50
cos / 2 0.667

75

CD

CA
β = = = ... (�CA

2
 = CA)

∴ / 2 48.2β = ° or β = 96.4°

Ratio of the time of cutting stroke to the time of return stroke

We know that

Time of cutting stroke 360 360 96.4
2.735

Time of return stroke 96.4

− β −= = =
β

 Ans.

Length of effective stroke

In order to find the length of effective stroke (i.e. R
1
R

2
), draw the space diagram of the

mechanism to some suitable scale, as shown in Fig. 5.33. Mark P
1
R

2
 = P

2
R

2
 = PR. Therefore by

measurement we find that,

Length of effective stroke = R1R2 = 87.5 mm Ans.

5.21. Double Slider Crank Chain

A kinematic chain which consists of two turning pairs and two sliding pairs is known as

double slider crank chain, as shown in Fig. 5.34. We see that the link 2 and link 1 form one turning

pair and link 2 and link 3 form the second turning pair. The link 3 and link 4 form one sliding pair and

link 1 and link 4 form the second sliding pair.

5.22.  Inversions of Double Slider Crank Chain

The following three inversions of a double slider crank chain are important from the subject

point of view :

1. Elliptical trammels. It is an instrument used for drawing ellipses. This inversion is obtained

by fixing the slotted plate (link 4), as shown in Fig. 5.34. The fixed plate or link 4 has two straight

grooves cut in it, at right angles to each other. The link 1 and link 3, are known as sliders and form sliding

pairs with link 4. The link A B (link 2) is a bar which forms turning pair with links 1 and 3.

 When the links 1 and 3 slide along their respective grooves, any point on the link 2 such as

P traces out an ellipse on the surface of link 4, as shown in Fig. 5.34 (a). A little consideration will

show that AP and BP are the semi-major axis and semi-minor axis of the ellipse respectively. This can

be proved as follows :
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(a) (b)

Fig. 5.34. Elliptical trammels.

Let us take OX and O Y as horizontal and vertical axes and let the link B A is inclined at an

angle θ with the horizontal, as shown in Fig. 5.34 (b). Now the co-ordinates of the point P on the link

B A will be

x = PQ = AP cos θ; and y = PR = BP sin θ

or cos ; and sin
yx

AP BP
= θ = θ

Squaring and adding,

     

22
2 2

2 2
cos sin 1

( ) ( )

yx

AP BP
+ = θ + θ =

This is the equation of an ellipse. Hence the path traced by point P is an ellipse whose semi-

major axis is AP and semi-minor axis is BP.

Note : If P is the mid-point of link B A, then AP = BP. The above equation can be written as

                        
2 2

2 2
1

( ) ( )

x y

AP AP
+ =           or      x2 + y2 = (AP)2

This is the equation of a circle whose radius is AP. Hence if P is the mid-point of link B A, it will trace

a circle.

2. Scotch yoke mechanism. This mechanism is used for converting rotary motion into a

reciprocating motion. The inversion is obtained by fixing either the link 1 or link 3. In Fig. 5.35, link

1 is fixed. In this mechanism, when the link 2 (which

corresponds to crank) rotates about B as centre, the link

4 (which corresponds to a frame) reciprocates. The fixed

link 1 guides the frame.

3. Oldham’s coupling. An oldham's coupling is

used for connecting two parallel shafts whose axes are

at a small distance apart. The shafts are coupled in such

a way that if one shaft rotates, the other shaft also rotates

at the same speed. This inversion is obtained by fixing

the link 2, as shown in Fig. 5.36 (a). The shafts to be

connected have two flanges (link 1 and link 3) rigidly

fastened at their ends by forging.

Fig. 5.35. Scotch yoke mechanism.
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The link 1 and link 3 form turning pairs with link 2. These flanges have diametrical slots cut

in their inner faces, as shown in Fig. 5.36 (b). The intermediate piece (link 4) which is a circular disc,

have two tongues (i.e. diametrical projections) T
1
 and T

2
 on each face at right angles to each other, as

shown in Fig. 5.36 (c). The tongues on the link 4 closely fit into the slots in the two flanges (link 1 and

link 3). The link 4 can slide or reciprocate in the slots in the flanges.

(a) (b) (c)

Fig. 5.36. Oldham’s coupling.

When the driving shaft A is rotated, the flange C (link 1) causes the intermediate piece (link

4) to rotate at the same angle through which the flange has rotated, and it further rotates the flange D

(link 3) at the same angle and thus the shaft B rotates. Hence links 1, 3 and 4 have the same angular

velocity at every instant. A little consideration will show, that there is a sliding motion between the

link 4 and each of the other links 1 and 3.

If the distance between the axes of the shafts is constant, the centre of intermediate piece will

describe a circle of radius equal to the distance between the axes of the two shafts. Therefore, the

maximum sliding speed of each tongue along its slot is equal to the peripheral velocity of the centre

of the disc along its circular path.

Let ω = Angular velocity of each shaft in rad/s, and

r = Distance between the axes of the shafts in metres.

∴  Maximum sliding speed of each tongue (in m/s),

v = ω.r

EXERCISES

1.  In a crank and slotted lever quick return mechanism, the distance between the fixed centres is 150

mm and the driving crank is 75 mm long. Determine the ratio of the time taken on the cutting and

return strokes. [Ans. 2]

2. In a crank and slotted lever quick return motion mechanism, the distance between the fixed centres O

and C is 200 mm. The driving crank CP is 75 mm long. The pin Q on the slotted lever, 360 mm from

the fulcrum O, is connected by a link QR 100 mm long, to a pin R on the ram. The line of stroke of R

is perpendicular to OC and intersects OC produced at a point 150 mm from C. Determine the ratio of

times taken on the cutting and return strokes. [Ans. 1.647]

3. In a crank and slotted lever quick return mechanism, as shown in Fig. 5.37, the driving crank length is

75 mm. The distance between the fixed centres is 200 mm and the length of the slotted lever is 500

mm. Find the ratio of the times taken on the cutting and idle strokes. Determine the effective stroke

also. [Ans. 1.67 ; 380 mm]
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8. Determine the mobility (degrees of freedom) of the mechanism shown in Fig. 5.39 (a) and (b) using

Kutzbach mobility criterion and classify them.

Fig. 5.39

9. Explain Grubler’s criterion for determining degree of freedom for mechanisms. Using Grubler’s cri-

terion for plane mechanism, prove that the minimum number of binary links in a constrained mecha-

nism with simple hinges is four.

10. Sketch and explain the various inversions of a slider crank chain.

11. Sketch and describe the four bar chain mechanism. Why it is considered to be the basic chain?

12. Show that slider crank mechanism is a modification of the basic four bar mechanism.

13. Sketch slider crank chain and its various inversions, stating actual machines in which these are used in

practice.

14. Sketch and describe the working of two different types of quick return mechanisms. Give examples of

their applications. Derive an expression for the ratio of times taken in forward and return stroke for

one of these mechanisms.

15. Sketch and explain any two inversions of a double slider crank chain.

16. Identify the kinematic chains to which the following mechanisms belong :

1. Steam engine mechanism ; 2. Beam engine ; 3. Whitworth quick return motion mechanism;

4. Elliptical trammels.

OBJECTIVE TYPE QUESTIONS

1. In a reciprocating steam engine, which of the following forms a kinematic link ?

(a) cylinder and piston (b) piston rod and connecting rod

(c) crank shaft and flywheel (d) flywheel and engine frame

2. The motion of a piston in the cylinder of a steam engine is an example of

(a) completely constrained motion (b) incompletely constrained motion

(c) successfully constrained motion (d) none of these

3. The motion transmitted between the teeth of gears in mesh is

(a) sliding (b) rolling

(c) may be rolling or sliding depending upon the shape of teeth

(d) partly sliding and partly rolling

4. The cam and follower without a spring forms a

(a) lower pair (b) higher pair

(c) self closed pair (d) force closed pair

5. A ball and a socket joint forms a

(a) turning pair (b) rolling pair (c) sliding pair (d) spherical pair

6. The lead screw of a lathe with nut forms a

(a) sliding pair (b) rolling pair (c) screw pair (d) turning pair

7. When the elements of the pair are kept in contact by the action of external forces, the pair is said to be a

(a) lower pair (b) higher pair

(c) self closed pair (d) force closed pair
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8. Which of the following is a turning pair ?

(a) Piston and cylinder of a reciprocating steam engine

(b) Shaft with collars at both ends fitted in a circular hole

(c) Lead screw of a lathe with nut

(d) Ball and socket joint

9. A combination of kinematic pairs, joined in such a way that the relative motion between the links is

completely constrained, is called a

(a) structure (b) mechanism

(c) kinematic chain (d) inversion

10. The relation between the number of pairs ( p ) forming a kinematic chain and the number of links (l) is

(a) l = 2p – 2 (b) l = 2p – 3 (c) l = 2p – 4 (d) l = 2p – 5

11. The relation between the number of links (l) and the number of binary joints ( j) for a kinematic chain

having constrained motion is given by 
3

2.
2

j l= −  If the left hand side of this equation is greater than

right hand side, then the chain is

(a) locked chain (b) completely constrained chain

(c) successfully constrained chain (d) incompletely constrained chain

12. In a kinematic chain, a quaternary joint is equivalent to

(a) one binary joint (b) two binary joints (c) three binary joints (d)  four binary joints

13. If n links are connected at the same joint, the joint is equivalent to

(a) (n – 1) binary joints (b) (n – 2) binary joints (c) (2n – 1) binary joints (d) none of these

14. In a 4 – bar linkage, if the lengths of shortest, longest and the other two links are denoted by s, l, p and

q, then it would result in Grashof’s linkage provided that

(a) l + p < s + q (b) l + s < p + q (c) l + p = s + q (d) none of these

15. A kinematic chain is known as a mechanism when

(a) none of the links is fixed (b) one of the links is fixed

(c) two of the links are fixed (d) all of the links are fixed

16. The Grubler’s criterion for determining the degrees of freedom (n) of a mechanism having plane motion

is

(a) n = (l – 1) – j (b) n = 2 (l – 1) – 2j (c) n = 3 (l – 1) – 2j (d) n = 4 (l – 1) – 3j

where l = Number of links, and j = Number of binary joints.

17. The mechanism forms a structure, when the number of degrees of freedom (n) is equal to

(a) 0 (b) 1 (c) 2 (d) – 1

18. In a four bar chain or quadric cycle chain

(a) each of the four pairs is a turning pair (b) one is a turning pair and three are sliding pairs

(c) three are turning pairs and one is sliding pair (d) each of the four pairs is a sliding pair.

19. Which of the following is an inversion of single slider crank chain ?

(a) Beam engine (b) Watt’s indicator mechanism

(c) Elliptical trammels (d) Whitworth quick return motion mechanism

20. Which of the following is an inversion of double slider crank chain ?

(a) Coupling rod of a locomotive (b) Pendulum pump

(c) Elliptical trammels (d) Oscillating cylinder engine

ANSWERS
1. (c) 2. (a) 3. (d) 4. (c) 5. (d)

6. (c) 7. (d) 8. (b) 9. (c) 10. (c)

11. (a) 12. (c) 13. (a) 14. (b) 15. (b)

16. (c) 17. (a) 18. (a) 19. (d) 20. (c)

GO To FIRST
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Fig. 6.2. Instantaneous

centre of rotation.

A
1 
B

1
. Such a motion of link A B to A

1

B
1
 is an example of combined motion

of rotation and translation, it being

immaterial whether the motion of

rotation takes first, or the motion of

translation.

In actual practice, the motion

of link A B is so gradual that it is

difficult to see the two separate

motions. But we see the two separate

motions, though the point B moves

faster than the point A . Thus, this

combined motion of rotation and

translation of the link A B may be assumed to be a motion of pure rotation about some centre I, known

as the instantaneous centre of rotation (also called centro or virtual centre). The position of

instantaneous centre may be located as discussed below:

Since the points A  and B of the link has moved to A
1
 and B

1

respectively under the motion of rotation (as assumed above), there-

fore the position of the centre of rotation must lie on the intersection of

the right bisectors of chords A A
1
 and B B

1
. Let these bisectors intersect

at I as shown in Fig. 6.2, which is the instantaneous centre of rotation or

virtual centre of the link A B.

From above, we see that the position of the link AB goes on

changing, therefore the centre about which the motion is assumed to

take place (i.e. the instantaneous centre of rotation) also goes on chang-

ing. Thus the instantaneous centre of a moving body may be defined as

that centre which goes on changing from one instant to another. The

locus of all such instantaneous centres is known as centrode. A line

drawn through an instantaneous centre and perpendicular to the plane

of motion is called instantaneous axis. The locus of this axis is known as axode.

6.2. Space and Body Centrodes

A rigid body in plane motion relative to a second rigid body, supposed fixed in space, may be

assumed to be rotating about an instantaneous centre at

that particular moment. In other words, the instantaneous

centre is a point in the body which may be considered

fixed at any particular moment. The locus of the

instantaneous centre in space during a definite motion of

the body is called the space centrode and the locus of the

instantaneous centre relative to the body itself is called

the body centrode. These two centrodes have the

instantaneous centre as a common point at any instant and

during the motion of the body, the body centrode rolls

without slipping over the space centrode.

Let I
1
 and I

2
 be the instantaneous centres for the

two different positions A
1 

B
1
 and A

2 
B

2
 of the link A

1 
B

1

after executing a plane motion as shown in Fig. 6.3. Similarly, if the number of positions of the link

A
1 
B

1
 are considered and a curve is drawn passing through these instantaneous centres (I

1
, I

2
....), then

the curve so obtained is called the space centrode.

Mechanisms on a steam automobile engine.

Fig. 6.3. Space and body centrode.
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Now consider a point C
1
 to be attached to the body or link A

1 
B

1
 and moves with it in such

a way that C
1
 coincides with I

1
 when the body is in position A

1 
B

1
. Let C

2
 be the position of the

point C
1
 when the link A

1 
B

1
 occupies the position A

2 
B

2
. A little consideration will show that the

point C
2
 will coincide with I

2
 (when the link is in position A

2 
B

2
) only if triangles A

1 
B

1 
C

1
 and

A
2 

B
2 
C

2
 are identical.

∴                 A
1 

C
2
 = A

2
 I

2
           and                 B

1 
C

2
 = B

2
 I

2

In the similar way, the number of positions of the point C
1
 can be obtained for different

positions of the link A
1
B

1
. The curve drawn through these points (C

1
, C

2
....) is called the body

centrode.

6.3. Methods for Determining the Velocity of a Point on a Link

Though there are many methods for determining the velocity of any point on a link in a

mechanism whose direction of motion (i.e. path) and velocity of some other point on the same link

is known in magnitude and direction, yet the following two methods are important from the subject

point of view.

1.  Instantaneous centre method,  and  2.  Relative velocity method.

The instantaneous centre method is convenient and easy to apply in simple mechanisms,

whereas the relative velocity method may be used to any configuration diagram. We shall discuss the

relative velocity method in the next chapter.

6.4. Velocity of a Point on a Link by
Instantaneous Centre Method

The instantaneous centre method of analysing the motion

in a mechanism is based upon the concept (as discussed in Art.

6.1) that any displacement of a body (or a rigid link) having

motion in one plane, can be considered as a pure rotational

motion of a rigid link as a whole about some centre, known as

instantaneous centre or virtual centre of rotation.

Consider two points A  and B on a rigid link. Let v
A

 and

v
B
 be the velocities of points A  and B, whose directions are given

by angles α and β as shown in Fig. 6.4. If v
A

 is known in

magnitude and direction and v
B
 in

direction only, then the magnitude of

v
B

 may be determined by the

instantaneous centre method as

discussed below :

Draw AI and  BI perpendicu-

lars to the directions v
A

 and v
B
 respec-

tively. Let these lines intersect at I,

which is known as instantaneous cen-

tre or virtual centre of the link. The

complete rigid link is to rotate or turn

about the centre I.

Since A  and B are the points

on a rigid link, therefore there cannot

be any relative motion between them

along the line A B.

Fig. 6.4. Velocity of a point on

a link.

Robots use various mechanisms to perform jobs.
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Now resolving the velocities along A B,

 v
A

 cos α = v
B
 cos β

or
A

B

v

v
=

cos sin (90 – )

cos sin (90 – )

β ° β=
α ° α

...(i)

Applying Lami’s theorem to triangle ABI,

                    
sin (90 – ) sin (90 – )

AI BI=
° β ° α

or                                
sin (90 – )

sin (90 – )

AI

BI

° β=
° α ...(ii)

From equation (i) and (ii),

                                    
A

B

v AI

v BI
=             or                

A Bv v

AI BI
= = ω ...(iii)

where                             ω = Angular velocity of the rigid link.

If C is any other point on the link, then

                                   
CA B vv v

AI BI CI
= = ...(iv)

From the above equation, we see that

1.  If v
A

 is known in magnitude and direction and v
B
 in direction only, then velocity of point

B or any other point C lying on the same link may be determined in magnitude and direction.

2.  The magnitude of velocities of the points on a rigid link is inversely proportional to the

distances from the points to the instantaneous centre and is perpendicular to the line joining the point

to the instantaneous centre.

6.5. Properties of the Instantaneous Centre

The following properties of the instantaneous centre are important from the subject point of

view :

1.  A rigid link rotates instantaneously relative to another link at the instantaneous centre for

the configuration of the mechanism considered.

2.  The two rigid links have no linear velocity relative to each other at the instantaneous

centre. At this point (i.e. instantaneous centre), the two rigid links have the same linear velocity

relative to the third rigid link. In other words, the velocity of the instantaneous centre relative to any

third rigid link will be same whether the instantaneous centre is regarded as a point on the first rigid

link or on the second rigid link.

6.6. Number of Instantaneous Centres in a
Mechanism

The number of instantaneous centres in a constrained

kinematic chain is equal to the number of possible combina-

tions of two links. The number of pairs of links or the number

of instantaneous centres is the number of combinations of n

links taken two at a time. Mathematically, number of instanta-

neous centres,

                    
( – 1)

,
2

n n
N =  where n = Number of links.

Four bar mechanisms.

Bar 2

Base
Ground 1

Revolutes
Bar 123

4

Ground 2

Bar 3
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6.7. Types of Instantaneous Centres

The instantaneous centres for a mechanism are

of the following three types :

1. Fixed instantaneous centres,  2. Permanent

instantaneous centres, and  3. Neither fixed nor per-

manent instantaneous centres.

The first two types i.e. fixed and permanent

instantaneous centres are together known as primary

instantaneous centres and the third type is known as

secondary instantaneous centres.

Consider a four bar mechanism ABCD as

shown in Fig. 6.5. The number of instantaneous cen-

tres (N) in a four bar mechanism is given by

                                      
( – 1) 4(4 – 1)

6
2 2

n n
N = = = ... (∵ n = 4)

The instantaneous centres I
12

 and I
14

 are called the fixed instantaneous centres as they re-

main in the same place for all configurations of the mechanism. The instantaneous centres I
23

 and I
34

are the permanent instantaneous centres as they move when the mechanism moves, but the joints

are of permanent nature. The instantaneous centres I
13

 and I
24

 are neither fixed nor permanent

instantaneous centres as they vary with the configuration of the mechanism.
Note:  The instantaneous centre of two links such as link 1 and link 2 is usually denoted by I

12
 and so on. It is

read as I one two and not I twelve.

6.8. Location of Instantaneous Centres

The following rules may be used in locating the instantaneous centres in a mechanism :

1.  When the two links are connected by a pin joint (or pivot joint), the instantaneous centre

Fig. 6.5. Types of instantaneous centres.

Computer disk drive mechanisms.

Note : This picture is given as additional information and is not a direct example of the current chapter.

Track selector

mechanism

The read/write head

is guided by informa-

tion stored on the disk

itself

The hard disk is

coated with a

magnetic materials

Arm moves to a

track to retrive

information stored

there
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lies on the centre of the pin as shown in Fig. 6.6 (a). Such a instantaneous centre is of permanent

nature, but if one of the links is fixed, the instantaneous centre will be of fixed type.

2. When the two links have a pure rolling contact (i.e. link 2 rolls without slipping upon the

fixed link 1 which may be straight or curved), the instantaneous centre lies on their point of contact,

as shown in Fig. 6.6 (b). The velocity of any point A  on the link 2 relative to fixed link 1 will be

perpendicular to I
12

 A  and is proportional to I
12

 A  . In other words

A 12

B 12

v I A

v I B
=

3. When the two links have a sliding contact, the instantaneous centre lies on the common

normal at the point of contact. We shall consider the following three cases :

(a) When the link 2 (slider) moves on fixed link 1 having straight surface as shown in

Fig. 6.6 (c), the instantaneous centre lies at infinity and each point on the slider have

the same velocity.

(b) When the link 2 (slider) moves on fixed link 1 having curved surface as shown in Fig.

6.6 (d),the instantaneous centre lies on the centre of curvature of the curvilinear path

in the configuration at that instant.

(c) When the link 2 (slider) moves on fixed link 1 having constant radius of curvature as

shown in Fig. 6.6 (e), the instantaneous centre lies at the centre of curvature i.e. the

centre of the circle, for all configuration of the links.

Fig. 6.6. Location of instantaneous centres.

6.9.  Aronhold Kennedy (or Three Centres in Line) Theorem

The Aronhold Kennedy’s theorem states that if three bodies move relatively to each other,

they have three instantaneous centres and lie on a straight line.

Consider three kinematic links A , B and C having relative

plane motion. The number of instantaneous centres (N) is given by

                                      
( – 1) 3(3 – 1)

3
2 2

n n
N = = =

where                                         n = Number of links = 3

The two instantaneous centres at the pin joints of B with A ,

and C with A  (i.e. I
ab

 and I
ac

) are the permanent instantaneous centres.

According to Aronhold Kennedy’s theorem, the third instantaneous

centre I
bc

 must lie on the line joining I
ab

 and I
ac

. In order to prove this,
Fig. 6.7. Aronhold Kennedy’s

theorem.
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let us consider that the instantaneous centre I
bc

 lies outside the line joining I
ab

 and I
ac

 as shown in Fig. 6.7.

The point I
bc

 belongs to both the links B and C. Let us consider the point I
bc

 on the link B. Its velocity

v
BC 

 must be perpendicular to the line joining I
ab

 and I
bc

. Now consider the point I
bc

 on the link C. Its

velocity v
BC

 must be perpendicular to the line joining I
ac

 and I
bc

.

We have already discussed in Art. 6.5, that the velocity of the instantaneous centre is same

whether it is regarded as a point on the first link or as a point on the second link.  Therefore, the velocity

of the point I
bc

 cannot be perpendicular to both lines I
ab

 I
bc

 and I
ac

 I
bc

 unless the point I
bc

 lies on the line

joining the points I
ab

 and I
ac

. Thus the three instantaneous centres (I
ab

, I
ac

 and I
bc

) must lie on the same

straight line. The exact location of I
bc

 on line I
ab

 I
ac

 depends upon the directions and magnitudes of the

angular velocities of B and C relative to A .

The above picture shows ellipsograph which is used to draw ellipses.

Central ring

Ellipses drawn by

the ellipsograph

Winding handle to

operate the device

Drawing

Pencil

Note : This picture is given as additional information and is not a direct example of the current chapter.

6.10. Method of Locating Instantaneous Centres in a Mechanism

Consider a pin jointed four bar mechanism as shown in Fig. 6.8 (a). The following procedure

is adopted for locating instantaneous centres.

1.  First of all, determine the number of instantaneous centres (N) by using the relation

                                     
( – 1)

,
2

n n
N =  where n = Number of links.

In the present case,     
4(4 – 1)

6
2

N = = ...(∵ n = 4)

2.  Make a list of all the instantaneous centres in a mechanism. Since for a four bar mecha-

nism, there are six instantaneous centres, therefore these centres are listed as shown in the following

table (known as book-keeping table).

Links 1 2 3 4

Instantaneous 12 23 34 –

centres 13 24

(6 in number) 14
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3.  Locate the fixed and permanent instantaneous centres by inspection. In Fig. 6.8 (a), I
12

and I
14

 are fixed instantaneous centres and I
23

 and I
34

 are permanent instantaneous centres.

Note. The four bar mechanism has four turning pairs, therefore there are four primary (i.e. fixed and permanent)

instantaneous centres and are located at the centres of the pin joints.

Fig. 6.8. Method of locating instantaneous centres.

4.  Locate the remaining neither fixed nor permanent instantaneous centres (or secondary

centres) by Kennedy’s theorem. This is done by circle diagram as shown in Fig. 6.8 (b). Mark points

on a circle equal to the number of links in a mechanism. In the present case, mark 1, 2, 3, and 4 on the

circle.

5.  Join the points by solid lines to show that these centres are already found. In the circle

diagram [Fig. 6.8 (b)] these lines are 12, 23, 34 and 14 to indicate the centres I
12

, I
23

, I
34

 and I
14

.

6.  In order to find the other two instantaneous centres, join two such points that the line

joining them forms two adjacent triangles in the circle diagram. The line which is responsible for

completing two triangles, should be a common side to the two triangles. In Fig. 6.8 (b), join 1 and 3

to form the triangles 123 and 341 and the instantaneous centre* I
13

  will lie on the intersection of  I
12

I
23

  and I
14

 I
34

, produced if necessary, on the mechanism. Thus the instantaneous centre I
13

 is located.

Join 1 and 3 by a dotted line on the circle diagram and mark number 5 on it. Similarly the instanta-

neous centre I
24

 will lie on the intersection of I
12

 I
14

 and I
23

 I
34

, produced if necessary, on the mecha-

nism. Thus I
24

 is located. Join 2 and 4 by a dotted line on the circle diagram and mark 6 on it. Hence

all the six instantaneous centres are located.

Note: Since some of the neither fixed nor permanent instantaneous centres are not required in solving problems,

therefore they may be omitted.

Example 6.1.  In a pin jointed four bar mecha-

nism, as shown in Fig. 6.9, AB = 300 mm, BC = CD = 360

mm, and AD = 600 mm. The angle BAD  = 60°. The crank

AB rotates uniformly at 100 r.p.m. Locate all the instanta-

neous centres and find the angular velocity of the link BC.

Solution. Given :  N
AB

 = 100 r.p.m  or

                  ω
AB

 = 2 π × 100/60 = 10.47 rad/s

Since  the length of crank A B = 300 mm = 0.3 m,

therefore velocity of point B on link A B,

* We may also say as follows: Considering links 1, 2 and 3, the instantaneous centres will be I
12

, I
23

 and I
13

.

The centres I
12

 and I
23

 have already been located. Similarly considering links 1, 3 and 4, the instantaneous

centres will be I
13

, I
34

 and I
14

, from which I
14

  and I
34

 have already been located. Thus we see that the centre

I
13

 lies on the intersection of the lines joining the points I
12

 I
23

 and I
14

 I
34

.

Fig. 6.9
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                               v
B
 = ω

AB
 × A B = 10.47 × 0.3 = 3.141 m/s

Location of instantaneous centres

The instantaneous centres are located as discussed below:

1.  Since the mechanism consists of four links (i.e. n = 4 ), therefore number of instantaneous

centres,

                                
( – 1) 4(4 – 1)

6
2 2

n n
N = = =

2.  For a four bar mechanism, the book keeping table may be drawn as discussed in Art. 6.10.

3.  Locate the fixed and permanent instantaneous centres by inspection. These centres are I
12

,

I
23

, I
34

 and I
14

, as shown in Fig. 6.10.

4.  Locate the remaining neither fixed nor permanent instantaneous centres by Aronhold

Kennedy’s theorem. This is done by circle diagram as shown in Fig. 6.11. Mark four points (equal to

the number of links in a mechanism) 1, 2, 3, and 4 on the circle.

Fig. 6.10

5.  Join points 1 to 2, 2 to 3, 3 to 4 and 4 to 1 to indicate the instantaneous centres already

located i.e. I
12

, I
23

, I
34

 and I
14

.

6.  Join 1 to 3 to form two triangles 1 2 3 and 3 4 1. The side 13, common to both triangles,

is responsible for completing the two triangles. Therefore the instanta-

neous centre I
13

 lies on the intersection of the lines joining the points I
12

I
23

 and I
34

 I
14

 as shown in Fig. 6.10. Thus centre I
13

 is located. Mark

number 5 (because four instantaneous centres have already been located)

on the dotted line 1 3.

7.  Now join 2 to 4 to complete two triangles 2 3 4 and 1 2 4.

The side 2 4, common to both triangles, is responsible for completing

the two triangles. Therefore centre I
24

 lies on the intersection of the lines

joining the points I
23

 I
34

 and I
12

 I
14

 as shown in Fig. 6.10. Thus centre I
24

is located. Mark number 6 on the dotted line 2 4. Thus all the six instan-

taneous centres are located.

Angular velocity of the link BC

Let                           ω
BC

 = Angular velocity of the link BC.

Since B is also a point on link BC, therefore velocity of point B on link BC,

v
B

= ω
BC

 × I
13

 B

Fig. 6.11
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By measurement, we find that    I
13

 B   =   500 mm = 0.5 m

∴                              ω
BC

=
B

13

3.141
6.282 rad/s

0.5

v

I B
= =  Ans.

Example 6.2.  Locate all the instantaneous centres of the slider crank mechanism as shown

in Fig. 6.12. The lengths of crank OB and connecting rod AB are 100 mm and 400 mm respectively.

If the crank rotates clockwise with an angular velocity of 10 rad/s, find: 1. Velocity of the slider A,

and 2. Angular velocity of the connecting rod AB.

Fig. 6.12

Solution.  Given :     ω
OB 

= 10 rad/ s; OB = 100 mm = 0.1 m

We know that linear velocity of the crank OB,

v
OB

= v
B
 = ω

OB
 × OB = 10 × 0.1 = 1 m/s

Location of instantaneous centres

The instantaneous centres in a slider crank mechanism are located as discussed below:

1.  Since there are four links (i.e. n = 4), therefore the number of instantaneous centres,

                                     
( – 1) 4 (4 – 1)

6
2 2

n n
N = = =

2.  For a four link mechanism, the book keeping table may be drawn as discussed in Art. 6.10.

3.  Locate the fixed and permanent instantaneous centres by inspection. These centres are I
12

,

I
23

 and I
34

 as shown in Fig. 6.13. Since the slider (link 4) moves on a straight surface (link 1), there-

fore the instantaneous centre I
14

 will be at infinity.

Note: Since the slider crank mechanism has three turning pairs and one sliding pair, therefore there will be three

primary (i.e. fixed and permanent) instantaneous centres.

Slider crank mechanism.

Pin

Slider

Connecting

rod
Crank

Bearing block
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4.  Locate the other two remaining neither fixed nor permanent instantaneous centres, by

Aronhold Kennedy’s theorem. This is done by circle diagram as shown in Fig. 6.14. Mark four points

1, 2, 3 and 4 (equal to the number of links in a mechanism) on the circle to indicate I
12

, I
23

, I
34

 and I
14

.

Fig. 6.13 Fig. 6.14

5.  Join 1 to 3 to form two triangles 1 2 3 and 3 4 1 in the circle diagram. The side 1 3,

common to both triangles, is responsible for completing the two triangles. Therefore the centre I
13

will lie on the intersection of I
12

 I
23

 and I
14

 I
34

, produced if necessary. Thus centre I
13

 is located. Join

1 to 3 by a dotted line and mark number 5 on it.

6.  Join 2 to 4 by a dotted line to form two triangles 2 3 4 and 1 2 4. The side 2 4, common

to both triangles, is responsible for completing the two triangles. Therefore the centre I
24

 lies on the

intersection of I
23

 I
34

 and I
12

 I
14

. Join 2 to 4 by a dotted line on the circle diagram and mark number 6

on it. Thus all the six instantaneous centres are located.

By measurement, we find that

                            I
13

 A = 460 mm = 0.46 m ; and I
13

 B = 560 mm = 0.56 m

1. Velocity of the slider A

Let                              v
A

 = Velocity of the slider A .

We know that        
A B

13 13

v v

I A I B
=

or                                            13
A B

13

0.46
1 0.82 m/s

0.56

I A
v v

I B
= × = × =    Ans.

2. Angular velocity of the connecting rod AB

Let                      ω
AB

= Angular velocity of the connecting rod A B.

We know that        
A B

AB

13 13

v v

I A I B
= = ω
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∴                             B
AB

13

1
1.78 rad/s

0.56

v

I B
ω = = =   Ans.

Note:  The velocity of the slider A  and angular velocity of the connecting rod A B may also be determined as

follows :

From similar triangles I
13

 I
23

 I
34

 and I
12

 I
23

 I
24

,

                               
12 23 23 24

13 23 23 34

I I I I

I I I I
= ...(i)

and                                     
13 34 12 24

34 23 23 24

I I I I

I I I I
= ...(ii)

We know that           
B OB

AB
13 13

v OB

I B I B

ω ×ω = = ...(∵  v
B
 = ω

OB
 × OB)

                                          
12 23 23 24

OB OB
13 23 23 34

I I I I

I I I I
= ω × = ω ×   ...[From equation (i)] ...(iii)

Also                            
23 24

A AB 13 OB 13 34
23 34

.
I I

v I A I I
I I

= ω × = ω × × ...[From equation (iii)]

                                           = ω
OB

 × I
12

 I
24

 = ω
OB

 × OD ...[From equation (ii)]

Example 6.3.  A mechanism, as shown in Fig. 6.15, has the following dimensions:

OA = 200 mm; AB = 1.5 m; BC = 600 mm; CD = 500 mm and BE = 400 mm. Locate all the

instantaneous centres.

If crank OA rotates uniformly at 120 r.p.m. clockwise, find 1. the velocity of B, C and D,

2.  the angular velocity of the links AB, BC and CD.

The above picture shows a digging machine.

Hydraulic

rams

Load

Exhaust

waste heat

Engine

Note : This picture is given as additional information and is not a direct example of the current chapter.
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8. The dimensions of various links in a mechanism, as shown in Fig. 6.34, are as follows :

Fig. 6.34

A B = 25 mm ; BC = 175 mm ; CD = 60 mm ; AD = 150 mm ; BE = EC ; and EF = FG = 100 mm.

The crank A B rotates at 200 r.p.m. When the angle BAD is 135°, determine by instantaneous centre

method : 1. Velocity of G, 2. Angular velocity of EF, and 3. Velocity of sliding of EF in the swivel

block S.

[Ans. 120 mm/s ; 6.5 rad/s ; 400 mm/s]

DO YOU KNOW ?

1. What do you understand by the instantaneous centre of rotation (centro) in kinematic of

machines? Answer briefly.

2. Explain, with the help of a neat sketch, the space centrode and body centrode.

3. Explain with sketch the instantaneous centre method for determination of velocities of links and

mechanisms.

4. Write the relation between the number of instantaneous centres and the number of links in a mechanism.

5. Discuss the three types of instantaneous centres for a mechanism.

6. State and prove the ‘Aronhold Kennedy’s Theorem’ of three instantaneous centres.

OBJECTIVE TYPE QUESTIONS

1. The total number of instantaneous centres for a mechanism consisting of n links are

(a)
2

n
(b) n

(c)
– 1

2

n
(d)

( – 1)

2

n n

2. According to Aronhold Kennedy’s theorem, if three bodies move relatively to each other, their

instantaneous centres will lie on a

(a) straight line (b) parabolic curve

 (c) ellipse (d) none of these
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3. In a mechanism, the fixed instantaneous centres are those centres which

(a) remain in the same place for all configurations of the mechanism

(b)  vary with the configuration of the mechanism

(c) moves as the mechanism moves, but joints are of permanent nature

(d) none of the above

4. The instantaneous centres which vary with the configuration of the mechanism, are called

(a) permanent instantaneous centres

(b) fixed instantaneous centres

(c) neither fixed nor permanent instantaneous centres

(d) none of these

5. When a slider moves on a fixed link having curved surface, their instantaneous centre lies

(a) on their point of contact (b) at the centre of curvature

(c) at the centre of circle (d) at the pin joint

ANSWERS

1. (d) 2. (a) 3. (a) 4. (c) 5. (b)

GO To FIRST
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7.1. Introduction

We have discussed, in the previous chapter, the in-

stantaneous centre method for finding the velocity of various

points in the mechanisms. In this chapter, we shall discuss

the relative velocity method for determining the velocity of

different points in the mechanism. The study of velocity analy-

sis is very important for determining the acceleration of points

in the mechanisms which is discussed in the next chapter.

7.2. Relative Velocity of Two Bodies
Moving in Straight Lines

Here we shall discuss the application of vectors for

the relative velocity of two bodies moving along parallel lines

and inclined lines, as shown in Fig. 7.1 (a) and 7.2 (a)

respectively.

Consider two bodies A  and B moving along parallel

lines in the same direction with absolute velocities v
A 

and

v
B 

 such that v
A 

>
  
v

B 
, as shown in Fig. 7.1 (a). The relative

velocity of A  with respect to B,

v
AB 

= Vector difference of v
A 

and v
B
 = 

A Bv v−
...(i)

143

Velocity in
Mechanisms
(Relative Velocity Method)

7
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3. Motion of a Link.

4. Velocity of a Point on a Link

by Relative Velocity Method.

5. Velocities in a Slider Crank

Mechanism.

6. Rubbing Velocity at a Pin

Joint.
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Mechanism.
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From Fig. 7.1 (b), the relative velocity of A  with respect to B (i.e. v
AB

) may be written in the

vector form as follows :

                                    –ba oa ob=

Fig. 7.1. Relative velocity of two bodies moving along parallel lines.

Similarly, the relative velocity of B with respect to A ,

            vBA = Vector difference of vB and A B A–v v v= ...(ii)

or                      –ab ob oa=
Now consider the body B moving in an

inclined direction as shown in Fig. 7.2 (a). The

relative velocity of A  with respect to B may be

obtained by the law of parallelogram of veloci-

ties or triangle law of velocities. Take any fixed

point o and draw vector oa to represent v
A 

in

magnitude and direction to some suitable scale.

Similarly, draw vector ob to represent v
B 

in mag-

nitude and direction to the same scale. Then vec-

tor ba represents the relative velocity of A  with

respect to B as shown in Fig. 7.2 (b). In the simi-

lar way as discussed above, the relative velocity

of A  with respect to B,

                          v
AB

 = Vector difference of v
A 

and B A B–v v v=

or                                   –ba oa ob=

Fig. 7.2. Relative velocity of two bodies moving along inclined lines.

Similarly, the relative velocity of B with respect to A ,

 v
BA

= Vector difference of v
B
 and A B A–v v v=

or                                            ab ob oa= −
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From above, we conclude that the relative velocity of point A  with respect to B (v
AB

) and the

relative velocity of point B with respect A (v
BA

) are equal in magnitude but opposite in direction, i.e.

                                 
AB BA orv v ba ab= − = −

Note:  It may be noted that to find v
AB

, start from point b towards a and for v
BA

, start from point a towards b.

7.3. Motion of a Link

Consider two points A  and B on a rigid link A B, as

shown in Fig. 7.3 (a). Let one of the extremities (B) of the link

move relative to A , in a clockwise direction. Since the dis-

tance from A  to B remains the same, therefore there can be no

relative motion between A  and B, along the line A B. It is thus

obvious, that the relative motion of B with respect to A  must

be perpendicular to A B.

Hence velocity of any point on a link with respect to

another point on the same link is always perpendicular to

the line joining these points on the configuration (or space)

diagram.

The relative velocity of B with respect to A  (i.e. v
BA

) is represented by the vector ab and is

perpendicular to the line A B as shown in Fig. 7.3 (b).

Let                                     ω = Angular velocity of the link A B about A .

We know that the velocity of the point B with respect to A ,

                                      BA .v ab AB= = ω ...(i)

Similarly, the velocity of any point C on A B with respect to A ,

                                      CA .v ac AC= = ω ...(ii)

From equations (i) and (ii),

                                     
CA

BA

.

.

v ac AC AC

v AB ABab

ω= = =
ω ...(iii)

Thus, we see from equation (iii), that the point c on the vector ab divides it in the same ratio

as C divides the link A B.

Note:  The relative velocity of A  with respect to B is represented by ba, although A  may be a fixed point. The

motion between A  and B is only relative. Moreover, it is immaterial whether the link moves about A  in a

clockwise direction or about B in a clockwise direction.

7.4. Velocity of a Point on a Link by Relative Velocity Method

The relative velocity method is based upon the relative velocity of the various points of the

link as discussed in Art. 7.3.

Consider two points A  and B on a link as shown in Fig. 7.4 (a). Let the absolute velocity of the

point A  i.e. v
A

 is known in magnitude and direction and the absolute velocity of the point B i.e. v
B 

is

known in direction only. Then the velocity of B may be determined by drawing the velocity diagram

as shown in Fig. 7.4 (b). The velocity diagram is drawn as follows :

1. Take some convenient point o, known as the pole.

2. Through o, draw oa parallel and equal to v
A

, to some suitable scale.

3. Through a, draw a line perpendicular to A B of Fig. 7.4 (a). This line will represent the

velocity of B with respect to A , i.e. v
BA

.

4. Through o, draw a line parallel to v
B 

intersecting the line of v
BA 

at b.

Fig. 7.3. Motion of a Link.
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5. Measure ob, which gives the required velocity of point B ( v
B
), to the scale.

(a)  Motion of points on a link. (b)  Velocity diagram.

Fig. 7.4

Notes : 1.  The vector ab which represents the velocity of B with respect to A (v
BA

) is known as velocity of

image of the link A B.

2.  The absolute velocity of any point C on A B may be determined by dividing vector ab at c in the same

ratio as C divides A B in Fig. 7.4 (a).

In other words

ac AC

ab AB
=

Join oc. The *vector oc represents the absolute velocity

of point C (v
C
) and the vector ac represents the velocity of C

with respect to A  i.e. v
CA

.

3. The absolute velocity of any other point D outside

A B, as shown in Fig. 7.4 (a), may also be obtained by com-

pleting the velocity triangle abd and similar to triangle ABD,

as shown in Fig. 7.4 (b).

4. The angular velocity of the link A B may be found

by dividing the relative velocity of B with respect to A  (i.e.

v
BA

) to the length of the link A B. Mathematically, angular

velocity of the link A B,

BA
AB

v ab

AB AB
ω = =

7.5. Velocities in Slider Crank Mechanism

In the previous article, we have discused the relative velocity method for the velocity of any

point on a link, whose direction of motion and velocity of some other point on the same link is known.

The same method may also be applied for the velocities in a slider crank mechanism.

A slider crank mechanism is shown in Fig. 7.5 (a). The slider A  is attached to the connecting

rod  A B. Let the radius of crank OB be r and let it rotates in a clockwise direction, about the point O

with uniform angular velocity ω rad/s. Therefore, the velocity of B i.e. v
B 

is known in magnitude and

direction. The slider reciprocates along the line of stroke AO.

The velocity of the slider A  (i.e. v
A

) may be determined by relative velocity method as

discussed below :

1. From any point o, draw vector ob parallel to the direction of v
B  

(or perpendicular to OB)

such that ob = v
B  

= ω.r, to some suitable scale, as shown in Fig. 7.5 (b).

* The absolute velocities of the points are measured from the pole (i.e. fixed points) of the velocity diagram.
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Fig. 7.6. Links connected by pin joints.

(a) Slider crank mechanism. (b) Velocity diagram.

Fig. 7.5

2. Since A B is a rigid link, therefore the velocity of A  relative to B is perpendicular to A B.

Now draw vector ba perpendicular to A B to represent the velocity of A  with respect to B i.e. v
AB

.

3. From point o, draw vector oa parallel to the path of motion of the slider A  (which is along

AO only). The vectors ba and oa intersect at a. Now oa represents the velocity of the slider A  i.e. v
A

,

to the scale.

The angular velocity of the connecting rod A B (ω
AB

) may be determined as follows:

BA
AB

v ab

AB AB
ω = = (Anticlockwise about A)

The direction of vector ab (or ba) determines the sense of ω
AB

 which shows that it is

anticlockwise.

Note :  The absolute velocity of any other point E on the connecting rod AB may also be found out by dividing

vector ba such that be/ba = BE/BA . This is done by drawing any line bA
1 
equal in length of B A. Mark bE

1 
=

 
BE.

Join a A
1
. From E

1 
draw a line E

1
e parallel to a A

1
. The vector oe now represents the velocity of E and vector ae

represents the velocity of E with respect to A .

7.6. Rubbing Velocity at a Pin Joint

The links in a mechanism are mostly connected by means of pin joints. The rubbing velocity

is defined as the algebraic sum between the angular velocities of the two links which are connected

by pin joints, multiplied by the radius of the pin.

Consider two links OA and OB connected by a pin joint at O as shown in Fig. 7.6.

Let ω
1

= Angular velocity of the link OA or

the angular velocity of the  point A

 with respect to O.

ω
2

= Angular velocity of the link OB or

the angular velocity of the point B

with respect to O, and

r = Radius of the pin.

According to the definition,

Rubbing velocity at the pin joint O

= (ω
1
 – ω

2
) r, if the links move in the same direction

= (ω
1
 + ω

2
) r, if the links move in the opposite direction

Note : When the pin connects one sliding member and the other turning member, the angular velocity of the

sliding member is zero. In such cases,

Rubbing velocity at the pin joint = ω.r

where                             ω = Angular velocity of the turning member, and

                         r = Radius of the pin.
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Example 7.1. In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40

mm long and rotates at 120 r.p.m. clockwise, while the link CD  = 80 mm oscillates about D. BC and

AD are of equal length. Find the angular velocity of link CD when angle BAD = 60°.

Solution. Given : N
BA  

= 120 r.p.m. or ω
BA  

= 2 π × 120/60 = 12.568 rad/s

Since the length of crank A B  = 40 mm = 0.04 m, therefore velocity of B with respect to A  or

velocity of B, (because A  is a fixed point),

                      v
BA 

= v
B  

= ω
BA 

× A B = 12.568 × 0.04 = 0.503 m/s

(a) Space diagram (All dimensions in mm). (b) Velocity diagram.

Fig. 7.7

First of all, draw the space diagram to some suitable scale, as shown in Fig. 7.7 (a). Now the

velocity diagram, as shown in Fig. 7.7 (b), is drawn as discussed below :

1. Since the link AD is fixed, therefore points a and d are taken as one point in the velocity

diagram. Draw vector ab perpendicular to B A, to some suitable scale, to represent the velocity of B

with respect to A  or simply velocity of B (i.e. v
BA 

or v
B
) such that

vector ab = v
BA 

= v
B 

= 0.503 m/s

2. Now from point b, draw vector bc perpendicular to CB to represent the velocity of C with

respect to B (i.e. v
CB

) and from point d, draw vector dc perpendicular to CD to represent the velocity

of C with respect to D or simply velocity of C (i.e. v
CD 

or v
C
). The vectors bc and dc intersect at c.

By measurement, we find that

v
CD 

= v
C
 = vector dc = 0.385 m/s

We know that CD = 80 mm = 0.08 m

∴  Angular velocity of link CD,

                               
CD

CD

0.385

0.08

v

CD
ω = =  = 4.8 rad/s (clockwise about D) Ans.

Example 7.2. The crank and connecting rod

of a theoretical steam engine are 0.5 m and 2 m long

respectively. The crank makes 180 r.p.m. in the

clockwise direction. When it has turned 45° from the

inner dead centre position, determine : 1. velocity of

piston, 2. angular velocity of connecting rod,

3. velocity of point E on the connecting rod 1.5 m

from the gudgeon pin, 4. velocities of rubbing at the

pins of the crank shaft, crank and crosshead when

the diameters of their pins are 50 mm, 60 mm and 30

mm respectively, 5. position and linear velocity of any

point G on the connecting rod which has the least

velocity relative to crank shaft.
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Solution. Given : N
BO

= 180 r.p.m. or ω
BO  

= 2 π × 180/60 = 18.852 rad/s

Since the crank length OB = 0.5 m, therefore linear velocity of B with respect to O or velocity

of B (because O is a fixed point),

v
BO

= v
B 

= ω
BO 

× OB = 18.852 × 0.5 = 9.426 m/s

. . . (Perpendicular to BO)

1.  Velocity of piston

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.8 (a). Now the

velocity diagram, as shown in Fig. 7.8 (b), is drawn as discussed below :

1.  Draw vector ob perpendicular to BO, to some suitable scale, to represent the velocity of B

with respect to O or velocity of B such that

vector  ob = v
BO  

= v
B 

= 9.426 m/s

2.  From point b, draw vector bp perpendicular to BP to represent velocity of P with respect

to B (i.e. v
PB

) and from point o, draw vector op parallel to PO to represent velocity of P with respect

to O (i.e. v
PO 

or simply v
P
). The vectors bp and op intersect at point p.

By measurement, we find that velocity of piston P,

v
P

= vector op = 8.15 m/s  Ans.

(a) Space diagram. (b) Velocity diagram.

Fig. 7.8

2.  Angular velocity of connecting rod

From the velocity diagram, we find that the velocity of P with respect to B,

v
PB

= vector bp = 6.8 m/s

Since the length of connecting rod PB is 2 m, therefore angular velocity of the connecting rod,

                               
PB

PB

6.8

2

v

PB
ω = =  = 3.4 rad/s (Anticlockwise)  Ans.

3.  Velocity of point E on the connecting rod

The velocity of point E on the connecting rod 1.5 m from the gudgeon pin (i.e. PE = 1.5 m)

is determined by dividing the vector bp at e in the same ratio as E divides PB in Fig. 7.8 (a). This is

done in the similar way as discussed in Art 7.6. Join oe. The vector oe represents the velocity of E. By

measurement, we find that velocity of point E,

v
E

= vector oe = 8.5 m/s    Ans.

Note :  The point e on the vector bp may also be obtained as follows :

                                 
BE be

BP bp
=   or   

BE bp
be

BP

×=

4. Velocity of rubbing

We know that diameter of crank-shaft pin at O,

d
O

= 50 mm = 0.05 m
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Diameter of crank-pin at B,

d
B

= 60 mm = 0.06 m

and diameter of cross-head pin,

d
C

= 30 mm = 0.03 m

We know that velocity of rubbing at the pin of crank-shaft

       = 
O

BO

0.05
18.85

2 2

d
× ω = ×  = 0.47 m/s   Ans.

Velocity of rubbing at the pin of crank

      =  
B

BO PB

0.06
( ) (18.85 3.4)

2 2

d
ω + ω = +  = 0.6675 m/s  Ans.

...(�  ω
BO 

is clockwise and ω
PB

 is anticlockwise.)

and velocity of rubbing at the pin of cross-head

  = 
C

PB

0.03
3.4

2 2

d × ω = ×  = 0.051 m/s  Ans.

...(�  At the cross-head, the slider does not rotate and only the connecting rod has angular motion.)

5. Position and linear velocity of point G on the connecting rod which has the least velocity

relative to crank-shaft

The position of point G on the connecting rod which has the least velocity relative to crank-

shaft is determined by drawing perpendicular from o to vector bp. Since the length of og will be the

least, therefore the point g represents the required position of G on the connecting rod.

By measurement, we find that

   vector bg = 5  m/s

The position of point G on the connecting rod is obtained as follows:

                                
bg BG

bp BP
=   or  

5
2

6.8

bg
BG BP

bp
= × = ×  = 1.47 m   Ans.

By measurement, we find that the linear velocity of point G,

v
G

= vector og = 8 m/s   Ans.

Example 7.3. In Fig. 7.9, the angular velocity of

the crank OA is 600 r.p.m. Determine the linear velocity of

the slider D and the angular velocity of the link BD, when

the crank is inclined at an angle of 75° to the vertical. The

dimensions of various links are : OA = 28 mm ; AB  = 44 mm ;

BC  49 mm ; and BD  = 46 mm. The centre distance between

the centres of rotation O and C is 65 mm. The path of travel

of the slider is 11 mm below the fixed point C. The slider

moves along a horizontal path and OC is vertical.

Solution. Given: N
AO  

= 600 r.p.m.   or

ω
AO  

= 2 π × 600/60 = 62.84 rad/s

Since OA = 28 mm = 0.028 m, therefore velocity of

A  with respect to O or velocity of A  (because O is a fixed point),

  v
AO

= v
A

 = ω
AO

 × OA = 62.84 × 0.028 = 1.76 m/s

. . . (Perpendicular to OA)

Linear velocity of the slider D

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.10 (a). Now the

velocity diagram, as shown in Fig. 7.10 (b), is drawn as discussed below :

Fig. 7.9
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2. If the forces F
A 

and F
B 

do not act in the direction of the velocities of the points A  and B respectively,

then the component of the force in the direction of the velocity should be used in the above equations.

7.8. Mechanical Advantage

It is defined as the ratio of the load to the effort. In a four bar mechanism, as shown in Fig.

7.24, the link DA is called the driving link and the link CB as the driven link. The force F
A 

acting at A

is the effort and the force F
B 

at B will be the load or the resistance to overcome. We know from the

principle of conservation of energy, neglecting effect of friction,

F
A 

× v
A

= F
B 

× v
B
  or B A

A B

F v

F v
=

∴  Ideal mechanical advantage,

B A
( )

A B

M.A. ideal

F v

F v
= =

If we consider the effect of friction, less resistance will be overcome with the given effort.

Therefore the actual mechanical advantage will be less.

Let η = Efficiency of the mechanism.

∴  Actual mechanical advantage,

B A
( )

A B

M.A. actual

F v

F v
= η × = η ×

Note : The mechanical advantage may also be defined as the ratio of output torque to the input torque.

Let T
A

= Driving torque,

T
B

= Resisting torque,

ω
A

 and ω
B

= Angular velocity of the driving and driven links respectively.

∴   Ideal mechanical advantage,

B A
( )

A B

M.A. ideal

T

T

ω= =
ω . . . (Neglecting effect of friction)

and actual mechanical advantage,

B A
( )

A B

M.A. actual

T

T

ω= η × = η ×
ω . . . (Considering the effect of friction)

Example 7.10. A four bar mechanism has the following dimensions :

DA = 300 mm ; CB = AB = 360 mm ; DC = 600 mm. The link DC is fixed and the angle ADC

is 60°. The driving link DA rotates uniformly at a speed of 100 r.p.m. clockwise and the constant

driving torque has the magnitude of 50 N-m. Determine the velocity of the point B and angular

velocity of the driven link CB. Also find the actual mechanical advantage and the resisting torque if

the efficiency of the mechanism is 70 per cent.

Solution. Given : N
AD 

= 100 r.p.m. or ω
AD 

= 2 π × 100/60 = 10.47 rad/s ; T
A 

= 50 N-m

Since the length of driving link, DA = 300 mm = 0.3 m, therefore velocity of A  with respect

to D or velocity of A  (because D is a fixed point),

v
AD

= v
A 

= ω
AD 

× DA = 10.47 × 0.3 = 3.14 m/s

. . . (Perpendicular to DA)

Velocity of point B

First of all draw the space diagram, to some suitable scale, as shown in Fig. 7.25 (a). Now the

velocity diagram, as shown in Fig. 7.25 (b), is drawn as discussed below :
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Fig. 7.26

1. Since the link DC is fixed, therefore points d and c are taken as one point in the velocity

diagram. Draw vector da perpendicular to DA, to some suitable scale, to represent the velocity of A

with respect to D or simply velocity of A  (i.e. v
AD 

or v
A

) such that

vector da = v
AD 

= v
A 

= 3.14 m/s

2. Now from point a, draw vector ab perpendicular to A B to represent the velocity of B with

respect to A  (i.e. v
BA

), and from point c draw vector cb perpendicular to CB to represent the velocity

of B with respect to C or simply velocity of B (i.e. v
BC 

or v
B
). The vectors ab and cb intersect at b.

By measurement, we find that velocity of point B,

v
B

= v
BC 

= vector cb = 2.25 m/s  Ans.

(a) Space diagram. (b) Velocity diagram.

Fig. 7.25

Angular velocity of the driven link CB

Since CB = 360 mm = 0.36 m, therefore angular velocity of the driven link CB,

BC
BC

2.25

0.36

v

BC
ω = =  = 6.25 rad/s (Clockwise about C)  Ans.

Actual mechanical advantage

We know that the efficiency of the mechanism,

η = 70% = 0.7 . . . (Given)

∴ Actual mechanical advantage,

A
( )

B

10.47
M.A. 0.7 1.17

6.25
actual

ω
= η × = × =

ω
 Ans.

...(�  ω
A 

= ω
AD

; and ω
B
 = ω

BC
)

Resisting torque

Let T
B

= Resisting torque.

We know that efficiency of the mechanism (η),

    
B B B

B

A A

. 6.25
0.7 0.012

. 50 10.47

T T
T

T

ω ×= = =
ω ×

∴ T
B
 = 58.3 N–m  Ans.

Example 7.11. The dimensions of the various links of a

pneumatic riveter, as shown in Fig. 7.26, are as follows :

OA = 175 mm ; AB = 180 mm ; AD = 500 mm ;

and BC = 325 mm.

Find the velocity ratio between C and ram D when OB

is vertical. What will be the efficiency of the machine if a load

of 2.5 kN on the piston C causes a thrust of 4 kN at the ram D ?
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Fig. 7.43

3. Define rubbing velocity at a pin joint. What will be the rubbing velocity at pin joint when the two links

move in the same and opposite directions ?

4. What is the difference between ideal mechanical advantage and actual mechanical advantage ?

OBJECTIVE TYPE QUESTIONS
1. The direction of linear velocity of any point on a link with respect to another point on the same link is

(a) parallel to the link joining the points (b) perpendicular to the link joining the points

(c)  at 45° to the link joining the points (d) none of these

2. The magnitude of linear velocity of a point B on a link A B relative to point A  is

(a) ω.AB (b) ω (A B)2

(c) ω2 . A B (d) (ω . A B)2

where ω = Angular velocity of the link A B.

3. The two links OA and OB are connected by a pin joint at O. If the link OA turns with angular velocity

ω
1
 rad/s in the clockwise direction and the link OB turns with angular velocity

ω
2 

rad/s in the anti-clockwise direction, then the rubbing velocity at the pin joint O is

(a)  ω
1
.ω

2
.r (b) (ω

1 
– ω

2
) r

(c) (ω
1 

+ ω
2
) r (d) (ω

1 
– ω

2
) 2 r

where r = Radius of the pin at O.

4. In the above question, if both the links OA and OB turn in clockwise direction, then the rubbing

velocity at the pin joint O is

(a)  ω
1
.ω

2
.r (b) (ω

1 
– ω

2
) r

(c) (ω
1 

+ ω
2
) r (d) (ω

1 
– ω

2
) 2 r

5. In a four bar mechanism, as shown in Fig. 7.43, if a force F
A 

is

acting at point A  in the direction of its velocity v
A 

and a force F
B 

is

transmitted to the joint B in the direction of its velocity v
B 

, then the

ideal mechanical advantage is equal to

(a) F
B
.v

A
(b) F

A
.v

B

(c)
B

B

F

v
(d)

B

A

F

F

ANSWERS

1. (b) 2. (a) 3. (c) 4. (b) 5. (d)

GO To FIRST
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AccelerationAccelerationAccelerationAccelerationAcceleration

in Mechanismsin Mechanismsin Mechanismsin Mechanismsin Mechanisms

8
FFFFFeaeaeaeaeaturturturturtureseseseses

1. Introduction.

2. Acceleration Diagram for a

Link.

3. Acceleration of a Point on a

Link.

4. Acceleration in the Slider

Crank Mechanism.

5. Coriolis Component of

Acceleration.

8.1.8.1.8.1.8.1.8.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

We have discussed in the previous chapter the

velocities of various points in the mechanisms. Now we shall

discuss the acceleration of points in the mechanisms. The

acceleration analysis plays a very important role in the

development of machines and mechanisms.

8.2.8.2.8.2.8.2.8.2. Acceleration Diagram for a LinkAcceleration Diagram for a LinkAcceleration Diagram for a LinkAcceleration Diagram for a LinkAcceleration Diagram for a Link

Consider two points A and B on a rigid link as shown

in Fig. 8.1 (a). Let the point B moves with respect to A, with

an angular velocity of ω rad/s and let α rad/s2 be the angular

acceleration of the link AB.

(a) Link. (b) Acceleration diagram.

Fig. 8.1. Acceleration for a link.

Warping Machine

CONTENTSCONTENTS

CONTENTSCONTENTS
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We have already discussed that acceleration of a particle whose velocity changes both in

magnitude and direction at any instant has the following two components :

1.  The centripetal or radial component, which is perpendicular to the velocity of the

particle at the given instant.

2.  The tangential component, which is parallel to the velocity of the particle at the given

instant.

Thus for a link A B, the velocity of point B with respect to A  (i.e. v
BA

) is perpendicular to the

link A B as shown in Fig. 8.1 (a). Since the point B moves with respect to A  with an angular velocity

of ω rad/s, therefore centripetal or radial component of the acceleration of B with respect to A ,

               2 2 2
BA BALength of link = /r

a AB AB v AB= ω × ω × = BA...
v

AB

 ω =  
�

This radial component of acceleration acts perpendicular to the velocity v
BA

, In other words,

it acts parallel to the link AB.

We know that tangential component of the acceleration of B with respect to A ,

BA Length of the linkt
a AB AB= α × = α ×

This tangential component of acceleration acts parallel to the velocity v
BA

. In other words,

it acts perpendicular to the link A B.

In order to draw the acceleration diagram for a link A B, as shown in Fig. 8.1 (b), from any

point b', draw vector b'x parallel to BA to represent the radial component of acceleration of B with

respect to A  i.e. BA
r

a and from point x draw vector xa' perpendicular to B A to represent the tangential

component of acceleration of B with respect to A  i.e. BA .t
a Join b' a'. The vector b' a' (known as

acceleration image of the link A B) represents the total acceleration of B with respect to A (i.e. a
BA

)

and it is the vector sum of radial component BA( )r
a and tangential component BA( )t

a of acceleration.

8.3. Acceleration of a Point on a Link

(a) Points on a Link. (b) Acceleration diagram.

Fig. 8.2. Acceleration of a point on a link.

Consider two points A  and B on the rigid link, as shown in Fig. 8.2 (a). Let the acceleration

of the point A i.e. a
A

 is known in magnitude and direction and the direction of path of B is given. The

acceleration of the point B is determined in magnitude and direction by drawing the acceleration

diagram as discussed below.

1. From any point o', draw vector o'a' parallel to the direction of absolute acceleration at

point A i.e. a
A 

, to some suitable scale, as shown in Fig. 8.2 (b).
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2. We know that the acceleration of B with

respect to A i.e. a
BA

 has the following two

components:

(i) Radial component of the acceleration

of B with respect to A  i.e. BA
r

a , and

(ii) Tangential component of the

acceleration B with respect to A i.e. BA .t
a These two

components are mutually perpendicular.

3.  Draw vector a'x parallel to the link A B

(because radial component of the acceleration of B

with respect to A will pass through AB), such that

vector 2
BA BA /r

a x a v AB′ = =

where BA Velocity of with respect to .v B A=
Note: The value of v

BA
 may be obtained by drawing the

velocity diagram as discussed in the previous chapter.

4. From point x , draw vector xb'

perpendicular to A B or vector a'x (because tangential

component of B  with respect to A i.e. BA ,t
a is

perpendicular to radial component BA
r

a ) and

through o' draw a line parallel to the path of B to

represent the absolute acceleration of B i.e. a
B
. The

vectors xb' and o' b' intersect at b'. Now the values

of a
B
 and BA

t
a may be measured, to the scale.

5. By joining the points a' and b' we may determine the total acceleration of B with respect

to A i.e. a
BA

. The vector a' b' is known as acceleration image of the link A B.

6. For any other point C on the link, draw triangle a' b' c' similar to triangle ABC. Now

vector b' c' represents the acceleration of C with respect to B i.e. a
CB

, and vector a' c' represents the

acceleration of C with respect to A i.e. a
CA

. As discussed above, a
CB

 and a
CA

 will each have two

components as follows :

(i) a
CB

 has two components; CB CBandr t
a a as shown by triangle b' zc' in Fig. 8.2 (b), in

which b' z is parallel to BC and zc' is perpendicular to b' z or BC.

(ii) a
CA

 has two components ; CA CAandr t
a a as shown by triangle a' yc' in Fig. 8.2 (b), in

which a' y is parallel to AC and yc' is perpendicular to a' y or AC.

7. The angular acceleration of the link AB is obtained by dividing the tangential components

of the acceleration of B with respect to A 
BA( )t

a to the length of the link. Mathematically, angular

acceleration of the link A B,

AB BA /t
a ABα =

8.4. Acceleration in the Slider Crank Mechanism

A slider crank mechanism is shown in Fig. 8.3 (a). Let the crank OB makes an angle θ with

the inner dead centre (I.D.C) and rotates in a clockwise direction about the fixed point O with

uniform angular velocity ω
BO

 rad/s.

∴  Velocity of B with respect to O or velocity of B (because O is a fixed point),

 BO B BO , acting tangentially at .v v OB B= = ω ×

A refracting telescope uses mechanisms to

change directions.

Note : This picture is given as additional

information and is not a direct example of the

current chapter.
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We know that centripetal or radial acceleration of B with respect to O or acceleration of B

(because O is a fixed point),
2

2 BO
BO B BO
r v

a a OB
OB

= = ω × =

Note : A point at the end of a link which moves with constant angular velocity has no tangential component

of acceleration.

(a) Slider crank mechanism. (b) Acceleration diagram.

Fig. 8.3. Acceleration in the slider crank mechanism.

The acceleration diagram, as shown in Fig. 8.3 (b), may now be drawn as discussed below:

1. Draw vector o' b' parallel to BO and set off equal in magnitude of BO B
r

a a= , to some

suitable scale.

2. From point b', draw vector b'x parallel to B A. The vector b'x represents the radial component

of the acceleration of A  with respect to B whose magnitude is given by :
2

AB AB /r
a v BA=

Since the point B moves with constant angular velocity, therefore there will be no tangential

component of the acceleration.

3. From point x, draw vector xa' perpendicular to b'x (or A B). The vector xa'  represents the

tangential component of the acceleration of A  with respect to B i.e. AB .t
a

Note: When a point moves along a straight line, it has no centripetal or radial component of the acceleration.

4. Since the point A  reciprocates along AO, therefore the acceleration must be parallel to

velocity. Therefore from o', draw o' a' parallel to AO, intersecting the vector xa' at a'.

Now the acceleration of the piston or the slider A  (a
A

) and 
AB
t

a may be measured to the scale.

5. The vector b' a', which is the sum of the vectors b' x and x a', represents the total acceleration

of A  with respect to B i.e. a
AB

. The vector b' a' represents the acceleration of the connecting rod A B.

6. The acceleration of any other point on A B such as E may be obtained by dividing the vector

b' a' at e' in the same ratio as E divides A B in Fig. 8.3 (a). In other words

                     a' e' / a' b'  =  AE / AB

7. The angular acceleration of the connecting rod A B may be obtained by dividing the

tangential component of the acceleration of A  with respect to B ( )AB
ta to the length of A B. In other

words, angular acceleration of A B,

                            
AB AB / (Clockwise about )t

a AB Bα =
Example 8.1. The crank of a slider crank mechanism rotates clockwise at a constant speed

of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long. Determine : 1. linear

velocity and acceleration of the midpoint of the connecting rod, and 2. angular velocity and angular

acceleration of the connecting rod, at a crank angle of 45° from inner dead centre position.



178  �   Theory of Machines

Solution. Given : N
BO

 = 300 r.p.m. or ω
BO

 = 2 π × 300/60 = 31.42 rad/s; OB = 150 mm =

0.15 m ; B A = 600 mm = 0.6 m

We know that linear velocity of B with respect to O or velocity of B,

                                v
BO

 = v
B
 = ω

BO
 × OB = 31.42 × 0.15 = 4.713 m/s

...(Perpendicular to BO)

(a) Space diagram. (b) Velocity diagram. (c) Acceleration diagram.

Fig. 8.4

1.  Linear velocity of the midpoint of the connecting rod

First of all draw the space diagram, to some suitable scale; as shown in Fig. 8.4 (a). Now the

velocity diagram, as shown in Fig. 8.4 (b), is drawn as discussed below:

1. Draw vector ob perpendicular to BO, to some suitable scale, to represent the velocity of

B with respect to O or simply velocity of B i.e. v
BO

 or v
B
, such that

vector ob = v
BO

 = v
B
 = 4.713 m/s

2. From point b, draw vector ba perpendicular to BA to represent the velocity of A  with

respect to B i.e. v
AB 

, and from point o draw vector oa parallel to the motion of A  (which is along AO)

to represent the velocity of A i.e. v
A

. The vectors ba and oa intersect at a.

Note : This picture is given as additional information and is not a direct example of the current chapter.

Pushing with fluids

Ram moves

outwards

Oil pressure on

lower side of

piston

Load

moves

inwards

Oil pressure on

upper side of

piston

Ram moves

inwards
Load moves

outwards
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By measurement, we find that velocity of A  with respect to B,

AB

A

vector 3.4 m / s

and Velocity of , vector 4 m / s

v ba

A v oa

= =
= =

3. In order to find the velocity of the midpoint D of the connecting rod A B, divide the vector

ba at d in the same ratio as D divides A B, in the space diagram. In other words,

bd / ba = BD/BA

Note:  Since D is the midpoint of A B, therefore d is also midpoint of vector ba.

4. Join od. Now the vector od represents the velocity of the midpoint D of the connecting

rod i.e. v
D

.

By measurement, we find that

                                         v
D

 = vector od = 4.1 m/s Ans.

Acceleration of the midpoint of the connecting rod

We know that the radial component of the acceleration of B with respect to O or the

acceleration of B,
2 2

2BO
BO B

(4.713)
148.1 m/s

0.15

r v
a a

OB
= = = =

and the radial component of the acceleraiton of A  with respect to B,

2 2
2AB

AB

(3.4)
19.3 m/s

0.6

r v
a

BA
= = =

Now the acceleration diagram, as shown in Fig. 8.4 (c) is drawn as discussed below:

1. Draw vector o' b' parallel to BO, to some suitable scale, to represent the radial component

of the acceleration of B with respect to O or simply acceleration of B i.e. BO Bor ,r
a a such that

                         2
BO Bvector 148.1 m/sr

o b a a′ ′ = = =
Note:  Since the crank OB rotates at a constant speed, therefore there will be no tangential component of the

acceleration of B  with respect to O.

2. The acceleration of A  with respect to B has the following two components:

(a) The radial component of the acceleration of A  with respect to B i.e. AB ,r
a and

(b) The tangential component of the acceleration of A  with respect to B i.e. AB.t
a These two

components are mutually perpendicular.

Therefore from point b', draw vector b' x parallel to A B to represent 2
AB 19.3 m/sr

a = and

from point x draw vector xa' perpendicular to vector b' x whose magnitude is yet unknown.

3. Now from o', draw vector o' a' parallel to the path of motion of A  (which is along AO) to

represent the acceleration of A i.e. a
A 

. The vectors xa' and o' a' intersect at a'. Join a' b'.

4. In order to find the acceleration of the midpoint D of the connecting rod A B, divide the

vector a' b' at d' in the same ratio as D divides A B. In other words

                     / /b d b a BD BA′ ′ ′ ′ =

Note:  Since D is the midpoint of A B, therefore d' is also midpoint of vector b' a'.

5. Join o' d'. The vector o' d' represents the acceleration of midpoint D of the connecting rod

i.e. a
D

.

By measurement, we find that

  a
D

 = vector o' d' = 117 m/s2 Ans.
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2.  Angular velocity of the connecting rod

We know that angular velocity of the connecting rod A B,

                            
2AB

AB

3.4
5.67 rad/s (Anticlockwise about )

0.6

v
B

BA
ω = = =  Ans.

Angular acceleration of the connecting rod

From the acceleration diagram, we find that

2
AB 103 m/st

a = ...(By measurement)

We know that angular acceleration of the connecting rod A B,

2AB
AB

103
171.67 rad/s (Clockwise about )

0.6

t
a

B
BA

α = = = Ans.

Example 8.2.  An engine mechanism is shown in Fig. 8.5. The crank CB = 100 mm and the

connecting rod BA = 300 mm with centre of gravity G, 100 mm from B. In the position shown, the

crankshaft has a speed of 75 rad/s and an angular acceleration of 1200 rad/s2. Find:1. velocity of

G and angular velocity of AB, and 2. acceleration of G and angular acceleration of AB.

Fig. 8.5

Solution. Given :  ω
BC

 = 75 rad/s ; α
BC

 = 1200 rad/s2, CB = 100 mm = 0.1 m; B A = 300 mm

= 0.3 m

We know that velocity of B with respect to C or velocity of B,

                             BC B BC 75 0.1 7.5 m/sv v CB= = ω × = × = ...(Perpendicular to BC)

Since the angular acceleration of the crankshaft, α
BC

 = 1200 rad/s2, therefore tangential

component of the acceleration of B with respect to C,

                             2
BC BC 1200 0.1 120 m/st

a CB= α × = × =
Note:  When the angular acceleration is not given, then there will be no tangential component of the acceleration.

1.  Velocity of G and angular velocity of AB

First of all, draw the space diagram, to some suitable scale, as shown in Fig. 8.6 (a). Now the

velocity diagram, as shown in Fig. 8.6 (b), is drawn as discussed below:

1. Draw vector cb  perpendicular to CB, to some suitable scale, to represent the velocity of

B with respect to C or velocity of B (i.e. v
BC

 or v
B
), such that

BC Bvector 7.5 m/scb v v= = =
2. From point b, draw vector ba perpendicular to B A to represent the velocity of A  with

respect to B i.e. v
AB 

, and from point c, draw vector ca parallel to the path of motion of A  (which is

along AC) to represent the velocity of A  i.e. v
A

.The vectors ba and ca intersect at a.

3. Since the point G lies on A B, therefore divide vector ab at g in the same ratio as G divides

A B in the space diagram. In other words,

    / /ag ab AG AB=
The vector cg represents the velocity of G.

By measurement, we find that velocity of G,

v
G

 = vector cg = 6.8 m/s  Ans.
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From velocity diagram, we find that velocity of A  with respect to B,

   vAB = vector ba = 4 m/s

We know that angular velocity of A B,

AB
AB

4
13.3 rad/s (Clockwise)

0.3

v

BA
ω = = =  Ans.

(a) Space diagram. (b) Velocity diagram.

Fig. 8.6

2.  Acceleration of G and angular acceleration of AB

We know that radial component of the acceleration of B with

respect to C,

                             *
2 2

2BC
BC

(7.5)
562.5 m/s

0.1

r v
a

CB
= = =

and radial component of the acceleration of A  with respect to B,

                               

2 2
2AB

AB

4
53.3 m/s

0.3

r v
a

BA
= = =

Now the acceleration diagram, as shown in Fig. 8.6 (c), is drawn

as discussed below:

1. Draw vector c' b'' parallel to CB, to some suitable scale, to

represent the radial component  of the acceleration of B with respect to C,

i.e. BC ,r
a such that

                   2
BCvector 562.5 m/sr

c b a′ ′′ = =
2. From point b'', draw vector b'' b' perpendicular to vector c' b'' or CB to represent the

tangential component of the acceleration of B with respect to C i.e. BC
t

a , such that

2
BCvector 120 m/st

b b a′′ ′ = = ... (Given)

3. Join c' b'. The vector c' b' represents the total acceleration of B with respect to C i.e. aBC.

4. From point b', draw vector b' x parallel to B A to represent radial component of the

acceleration of A  with respect to B i.e. 
AB
r

a  such that

                               2
ABvector 53.3 m/sr

b x a′ = =
5. From point x, draw vector xa' perpendicular to vector b'x or B A to represent tangential

component of the acceleration of A  with respect to B i.e. AB ,t
a whose magnitude is not yet known.

6. Now draw vector c' a' parallel to the path of motion of A  (which is along AC) to represent

the acceleration of A i.e. a
A

.The vectors xa' and c'a' intersect at a'. Join b' a'. The vector b' a'

represents the acceleration of A  with respect to B i.e. a
AB

.

(c) Acceleration diagram.

Fig. 8.6

* When angular acceleration of the crank is not given, then there is no BC
t

a . In that case, BC BC B ,ra a a= = as

discussed in the previous example.
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7. In order to find the acceleratio of G, divide vector a' b' in g' in the same ratio as G divides

B A in Fig. 8.6 (a). Join c' g'. The vector c' g' represents the acceleration of G.

By measurement, we find that acceleration of G,

 a
G

 = vector c' g' = 414 m/s2 Ans.

From acceleration diagram, we find that tangential component of the acceleration of A  with

respect to B,

                                          2
AB vector 546 m/st

a xa′= = ...(By measurement)

∴  Angular acceleration of A B,

                                         
2AB

AB

546
1820 rad/s (Clockwise)

0.3

t
a

BA
α = = = Ans.

Example 8.3. In the mechanism shown in Fig. 8.7, the slider C is

moving to the right with a velocity of 1 m/s and an acceleration of 2.5 m/s2.

The dimensions of various links are AB = 3 m inclined at 45° with the

vertical and BC = 1.5 m inclined at 45° with the horizontal. Determine: 1. the

magnitude of vertical and horizontal component of the acceleration of the

point B, and 2. the angular acceleration of the links AB and BC.

Solution. Given : v
C
 = 1 m/s ; a

C
 = 2.5 m/s2; A B = 3 m ; BC = 1.5 m

First of all, draw the space diagram, as shown in Fig. 8.8 (a), to some

suitable scale. Now the velocity diagram, as shown in Fig. 8.8 (b), is drawn as

discussed below:

1. Since the points A  and D are fixed points, therefore they lie at one place in the velocity

diagram. Draw vector dc parallel to DC, to some suitable scale, which represents the velocity of

slider C with respect to D or simply velocity of C, such that

                                  vector dc = v
CD

 = v
C
 = 1 m/s

2. Since point B has two motions, one with respect to A  and the other with respect to C,

therefore from point a, draw vector ab perpendicular to A B to represent the velocity of B with

respect to A , i.e. v
BA

 and from point c draw vector cb perpendicular to CB to represent the velocity

of B with respect to C i.e. v
BC 

.The vectors ab and cb intersect at b.

(a) Space diagram. (b) Velocity diagram. (c) Acceleration diagram.

Fig. 8.8

By measurement, we find that velocity of B with respect to A ,

BA vector 0.72 m/sv ab= =
and velocity of B with respect to C,

BC vector 0.72 m/sv cb= =

Fig. 8.7
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We know that radial component of acceleration of B with respect to C,

                             

2 2
2BC

BC

(0.72)
0.346 m/s

1.5

r v
a

CB
= = =

and radial component of acceleration of B with respect to A ,

                            

2 2
2BA

BA

(0.72)
0.173 m/s

3

r v
a

AB
= = =

Now the acceleration diagram, as shown in Fig. 8.8 (c), is drawn as discussed below:

1. *Since the points A  and D are fixed points, therefore they lie at one place in the acceleration

diagram. Draw vector d' c' parallel to DC, to some suitable scale, to represent the acceleration of C

with respect to D or simply acceleration of C i.e. a
CD

 or a
C
 such that

                 2
CD Cvector 2.5 m/sd c a a′ ′ = = =

2. The acceleration of B with respect to C will have two components, i.e. one radial component

of B  with respect to C ( )BC
r

a and the other tangential component of B  with respect to

( )BC
.tC a Therefore from point c', draw vector c' x parallel to CB to represent 

BC
r

a such that

                   2
BCvector 0.346 m/sr

c x a′ = =

3. Now from point x, draw vector xb' perpendicular to vector c' x or CB to represent at
BC

whose magnitude is yet unknown.

4. The acceleration of B with respect to A  will also have two components, i.e. one radial

component of B with respect to A  (ar
BA

) and other tangential component of B with respect to A  (at 
BA

).

Therefore from point a' draw vector a' y parallel to A B to represent ar
BA

, such that

vector a' y = ar
BA

 = 0.173 m/s2

5. From point y, draw vector yb' perpendicular to vector a'y or AB to represent BA .t
a The

vector yb' intersect the vector xb' at b'. Join a' b' and c' b'. The vector a' b' represents the acceleration

of point B (a
B
) and the vector c' b' represents the acceleration of B with respect to C.

1.  Magnitude of vertical and horizontal component of the acceleration of the point B

Draw b' b'' perpendicular to a' c'. The vector b' b'' is the vertical component of the acceleration

of the point B and a' b'' is the horizontal component of the acceleration of the point B. By measurement,

                          vector b' b'' = 1.13 m/s2 and vector a' b'' = 0.9 m/s2  Ans.

2.  Angular acceleration of AB and BC

By measurement from acceleration diagram, we find that tangential component of acceleration

of the point B with respect to A ,

2
BA vector 1.41 m/st

a yb′= =

and tangential component of acceleration of the point B with respect to C,

                                    2
BC vector 1.94 m/st

a xb′= =

* If the mechanism consists of more than one fixed point, then all these points lie at the same place in the

velocity and acceleration diagrams.
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We know that angular acceleration of A B,

                                   
2BA

AB

1.41
0.47 rad/s

3

t
a

AB
α = = = Ans.

and angular acceleration of BC,

                                    2BA
BC

1.94
1.3 rad/s

1.5

t
a

CB
α = = = Ans.

Example 8.4. PQRS is a four bar chain with link PS fixed. The lengths of the links are PQ

= 62.5 mm ; QR = 175 mm ; RS = 112.5 mm ; and PS = 200 mm. The crank PQ rotates at 10 rad/s

clockwise. Draw the velocity and acceleration diagram when angle QPS = 60° and Q and R lie on

the same side of PS. Find the angular velocity and angular acceleration of links QR and RS.

Solution.  Given : ω
QP

 = 10 rad/s; PQ = 62.5 mm = 0.0625 m ; QR = 175 mm = 0.175 m ;

RS = 112.5 mm = 0.1125 m ; PS = 200 mm = 0.2 m

We know that velocity of Q with respect to P or velocity of Q,

v
QP

 = v
Q

 = ω
QP

 × PQ = 10 × 0.0625 = 0.625 m/s

...(Perpendicular to PQ)

Angular velocity of links QR and RS

First of all, draw the space diagram of a four bar chain, to some suitable scale, as shown in

Fig. 8.9 (a). Now the velocity diagram as shown in Fig. 8.9 (b), is drawn as discussed below:

(a) Space diagram. (b) Velocity diagram. (c) Acceleration diagram.

Fig. 8.9

1. Since P and S  are fixed points, therefore these points lie at one place in velocity diagram.

Draw vector pq perpendicular to PQ, to some suitable scale, to represent the velocity of Q with

respect to P or velocity of Q i.e. v
QP

 or v
Q

 such that

             vector pq = v
QP

 = v
Q

 = 0.625 m/s

2. From point q, draw vector qr perpendicular to QR to represent the velocity of R with

respect to Q (i.e. v
RQ

) and from point s, draw vector sr perpendicular to SR to represent the velocity

of R with respect to S or velocity of R (i.e. v
RS

 or v
R
). The vectors qr and sr intersect at r. By

measurement, we find that

                       v
RQ

 = vector qr = 0.333 m/s, and v
RS

 = v
R
 = vector sr = 0.426 m/s

We know that angular velocity of link QR,

                      
RQ

QR

0.333
1.9 rad/s (Anticlockwise)

0.175

v

RQ
ω = = = Ans.
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and angular velocity of link RS,

                       RS
RS

0.426
3.78 rad/s (Clockwise)

0.1125

v

SR
ω = = = A Ans.

Angular acceleration of links QR and RS

Since the angular acceleration of the crank PQ is not given, therefore there will be no tangential

component of the acceleration of Q with respect to P.

We know that radial component of the acceleration of Q with respect to P (or the acceleration

of Q),

                      

2 2
QP 2

QP QP Q

(0.625)
6.25 m/s

0.0625

r
v

a a a
PQ

= = = = =

Radial component of the acceleration of R with respect to Q,

                       

2 2
RQ 2

RQ

(0.333)
0.634 m/s

0.175

r v
a

QR
= = =

and radial component of the acceleration of R with respect to S (or the acceleration of R),

                        

2 2
2RS

RS RS R

(0.426)
1.613 m/s

0.1125

r v
a a a

SR
= = = = =

The acceleration diagram, as shown in Fig. 8.9 (c) is drawn as follows :

1. Since P and S  are fixed points, therefore these points lie at one place in the acceleration

diagram. Draw vector p'q' parallel to PQ, to some suitable scale, to represent the radial component

of acceleration of Q with respect to P or acceleration of Q i.e QP Qorr
a a such that

            
2

QP Qvector 6.25 m/sr
p q a a′ ′ = = =

2. From point q', draw vector q' x parallel to QR to represent the radial component of

acceleration of R with respect to Q i.e. RQ
r

a such that

             
2

RQvector 0.634 m/sr
q x a′ = =

3. From point x, draw vector xr' perpendicular to QR to represent the tangential component

of acceleration of R with respect to Q i.e RQ
t

a whose magnitude is not yet known.

4. Now from point s', draw vector s'y parallel to SR to represent the radial component of the

acceleration of R with respect to S i.e. RS
r

a such that

              2
RSvector 1.613 m/sr

s y a′ = =
5. From point y, draw vector yr' perpendicular to SR to represent the tangential component

of acceleration of R with respect to S i.e. RS
t

a .

6. The vectors xr' and yr' intersect at r'. Join p'r and q' r'. By measurement, we find that

                       
2 2

RQ RSvector 4.1 m/s and vector 5.3 m/st t
a xr a yr′ ′= = = =

We know that angular acceleration of link QR,

                        
RQ 2

QR

4.1
23.43 rad/s (Anticlockwise)

QR 0.175

t
a

α = = = Ans.

and angular acceleration of link RS,

                        
2RS

RS

5.3
47.1 rad/s (Anticlockwise)

0.1125

t
a

SR
α = = = Ans.
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Example 8.5. The dimensions and

configuration of the four bar mechanism, shown in

Fig. 8.10, are as follows :

P
1
A = 300 mm; P

2
B = 360 mm; AB = 360

mm, and P
1
P

2
 = 600 mm.

The angle AP
1
P

2
 = 60°. The crank P

1
A has

an angular velocity of 10 rad/s and an angular

acceleration of  30 rad/s2,  both clockwise.

Determine the angular velocities and angular

accelerations of P
2
B, and AB and the velocity and

acceleration of the joint B.

Solution.  Given : ω
AP1

 = 10 rad/s ; α
AP1

 = 30 rad/s2; P
1
A  = 300 mm = 0.3 m ; P

2
B = A B =

360 mm = 0.36 m

We know that the velocity of A  with respect to P
1
 or velocity of A,

                        v
AP1

 = v
A

 = ω
AP1

 × P
1
A = 10 × 0.3 = 3 m/s

Velocity of B and angular velocitites of P
2
B and AB

First of all, draw the space diagram, to some suitable scale, as shown in Fig. 8.11 (a). Now

the velocity diagram, as shown in Fig. 8.11 (b), is drawn as discussed below:

1. Since P
1
 and P

2
 are fixed points, therefore these points lie at one place in velocity diagram.

Draw vector p
1
 a perpendicular to P

1
A , to some suitable scale, to represent the velocity of A  with

respect to P
1
 or velocity of A i.e. v

AP1
 or v

A
, such that

               vector p
1
a = v

A P1
 = v

A
 = 3 m/s

2. From point a, draw vector ab perpendicular to AB to represent velocity of B with respect

to A  (i.e. v
BA

) and from point p
2
 draw vector p

2
b perpendicular to P

2
B to represent the velocity of B

with respect to P
2
 or velocity of B i.e. v

BP2
 or v

B
. The vectors ab and p

2
b intersect at b.

By measurement, we find that

                         v
BP2

 = v
B
 = vector p

2
b = 2.2 m/s  Ans.

and                          v
BA

 = vector ab = 2.05 m/s

We know that angular velocity of P
2
B,

                       
BP2

P2B
2

2.2
6.1 rad/s (Clockwise)

0.36

v

P B
ω = = = Ans.

and angular velocity of A B,

                        
BA

AB

2.05
5.7 rad/s (Anticlockwise)

0.36

v

AB
ω = = = Ans.

Acceleration of B and angular acceleration of P
2
B and AB

We know that tangential component of the acceleration of A  with respect to P
1
,

                   
2

A 1P P1 1
30 0.3 9 m/st

Aa P A= α × = × =

Radial component of the acceleration of A  with respect to P
1
,

                   

2
AP 2 2 21

AP AP 11 1
1

10 0.3 30 m/s
r

v
a P A

P A
= = ω × = × =

Fig. 8.10
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Radial component of the acceleration of B with respect to A .

                    

2 2
2BA

BA

(2.05)
11.67 m/s

0.36

r v
a

AB
= = =

and radial component of the acceleration of B with respect to P
2
,

                    

2 2
BP 22

BP2
2

(2.2)
13.44 m/s

0.36

r
v

a
P B

= = =

(a) Space diagram. (b) Velocity diagram.

Fig. 8.11

The acceleration diagram, as shown in Fig. 8.11 (c), is

drawn as follows:

1. Since P
1
 and P

2
 are fixed points, therefore these points

will lie at one place, in the acceleration diagram. Draw vector

p
1
' x parallel to P

1
A , to some suitable scale, to represent the

radial component of the acceleration of A with respect to P
1
,

such that

          2
1 AP1

vector 30 m/sr
p x a′ = =

2. From point x, draw vector xa' perpendicular to P
1
A  to

represent the tangential component of the acceleration of A  with

respect to P
1
, such that

       2
A P1

vector 9 m/s
txa a′ = =

3. Join p
1
' a'. The vector p

1
' a' represents the acceleration

of A . By measurement, we find that the acceleration of A ,

                        a
A
 = a

AP1
 = 31.6 m/s2

4. From point a', draw vector a' y parallel to A B to represent the radial component of the

acceleration of B with respect to A , such that

           2
BAvector 11.67 m/sr

a y a′ = =

5. From point y, draw vector yb' perpendicular to A B to represent the tangential component

of the acceleration of B with respect to A  (i.e. BA
t

a ) whose magnitude is yet unknown.

6. Now from point 2 ,p ′ draw vector 2p z′ parallel to P
2
B to represent the radial component

of the acceleration B with respect to P
2
, such that

                          2
2 BP2

vector 13.44 m/sr
p z a′ = =

(c) Acceleration diagram

Fig. 8.11
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7. From point z, draw vector zb' perpendicular to P
2
B to represent the tangential component

of the acceleration of B with respect to P
2
 i.e. BP2

.t
a

8. The vectors yb' and zb' intersect at b'. Now the vector p
2
' b' represents the acceleration of

B with respect to P
2
 or the acceleration of B i.e. a

BP2
 or a

B
. By measurement, we find that

                                      a
BP2

 = a
B
 = vector p

2
' b' = 29.6 m/s2 Ans.

Also                     2 2
BA BP2

vector 13.6 m/s , and vector 26.6 m/s
t tyb a zb a′ ′= = = =

We know that angular acceleration of P
2
B,

                                     
BP 22

P2B
2

26.6
73.8 rad/s (Anticlockwise)

0.36

t
a

P B
α = = = Ans.

and angular acceleration of A B,
2BA

AB

13.6
37.8 rad/s (Anticlockwise)

0.36

t
a

AB
α = = = Ans.

Example 8.6. In the mechanism, as shown in Fig. 8.12, the crank OA rotates at 20 r.p.m.

anticlockwise and gives motion to the sliding blocks B and D. The dimensions of the various links

are OA = 300 mm; AB = 1200 mm; BC = 450 mm and CD = 450 mm.

Fig. 8.12

For the given configuration, determine : 1. velocities of sliding at B and D, 2. angular

velocity of CD, 3. linear acceleration of D, and 4. angular acceleration of CD.

Solution. Given : N
AO

 = 20 r.p.m. or ω
AO

 = 2 π × 20/60 = 2.1 rad/s ; OA = 300 mm = 0.3 m ;

A B = 1200 mm = 1.2 m ; BC = CD = 450 mm = 0.45 m

Bicycle is a common example where simple mechanisms are used.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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Now the acceleration diagram, as shown in Fig. 8.25 (c), is drawn as discussed below:

1. Since A  and C are fixed points, therefore these points are marked as one point in the

acceleration diagram. Draw vector a'b' parallel to A B, to some suitable scale, to represent the radial

component of the acceleration of B with respect to A  or the acceleration of B, such that

                 2
BA Bvector 284.4 m/sr

a b a a′ ′ = = =
2. Draw vector c'd' parallel to CD to represent the radial component of the acceleration of D

with respect to C or the acceleration of D, such that

                2
DC Dvector 568.8 m/sr

c d a a′ ′ = = =

3. Now from point b', draw vector b'x parallel to BE to represent the radial component of the

acceleration of E with respect to B, such that

2
EBvector 437.4 m/sr

b x a′ ′ = =

4. From point x, draw vector xe' perpendicular to BE to represent the tangential component

of acceleration of E with respect to B (i.e. EB
t

a ) whose magnitude is yet unknown.

5. From point d', draw vector d'y parallel to DE to represent the radial component of the

acceleration of E with respect to D, such that

2
EDvector 0.15 m/sr

d y a′ = =

Note:  Since the magnitude of ED
r

a is very small (i.e. 0.15 m/s2), therefore the points d' and y coincide.

6. From point y, draw vector ye' perpendicular to DE to represent the tangential component

of the acceleration of E with respect to D (i.e. ED
t

a ). The vectors xe' and ye' intersect at e'.

7. From point e', draw vector e'z parallel to EP to represent the radial component of the

acceleration of P with respect to E, such that

2
PEvector 110.45 m/sr

e z a′ = =
8. From point z, draw vector zp' perpendicular to EP to represent the tangential component

of the acceleration of P with respect to E (i.e. PE
t

a ) whose magnitude is yet unknown.

9. From point a', draw vector a'p' parallel to the path of motion of P (which is horizontal) to

represent the acceleration of P. The vectors zp' and a'p' intersect at p'.

By measurement, we find that acceleration of the piston P,

a
P
 = vector a'p' = 655 m/s2 Ans.

8.5. Coriolis Component of Acceleration

When a point on one link is sliding along another rotating link, such as in quick return

motion mechanism, then the coriolis component of the acceleration must be calculated.

Consider a link OA and a slider B as shown in Fig. 8.26 (a). The slider B moves along the

link OA. The point C is the coincident point on the link OA.

Let ω = Angular velocity of the link OA at time t seconds.

v = Velocity of the slider B along the link OA at time t seconds.

ω.r = Velocity of the slider B with respect to O (perpendicular to the link OA)

at time t seconds, and
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(ω + δω), (v + δv) and (ω + δω) (r + δr)

= Corresponding values at time (t + δt) seconds.

Fig. 8.26. Coriolis component of acceleration.

Let us now find out the acceleration of the slider B

with respect to O and with respect to its coincident point C

lying on the link OA.

Fig. 8.26 (b) shows the velocity diagram when their

velocities v and (v + δv) are considered. In this diagram, the

vector bb
1
 represents the change in velocity in time δt sec ; the

vector bx represents the component of change of velocity bb
1

along OA (i.e. along radial direction) and vector xb
1
 represents

the component of change of velocity bb
1
 in a direction

perpendicular to OA (i.e. in tangential direction). Therefore

( ) cosbx ox ob v v v= − = + δ δθ − ↑
Since δθ is very small, therefore substituting

cos δθ = 1, we have

( )bx v v v v= + δ − ↑ = δ ↑
                                                         ...(Acting radially outwards)

and 1 ( ) sinxb v v= + δ δθ
Since δθ is very small, therefore substituting sin δθ =

δθ, we have

1 ( ) . .xb v v v v= + δ δθ = δθ + δ δθ
Neglecting δv.δθ being very small, therefore

1 .xb v
←

= δθ ...(Perpendicular to OA and towards left)

Fig. 8.26 (c) shows the velocity diagram when the velocities ω.r and (ω + δω) (r + δr) are

considered. In this diagram, vector bb
1
 represents the change in velocity ; vector yb

1
 represents the

component of change of velocity bb
1
 along OA (i.e. along radial direction) and vector by represents

the component of change of velocity bb
1
 in a direction perpendicular to OA (i.e. in a tangential

direction). Therefore

1 ( ) ( ) sin

( . . . . ) sin

yb r r

r r r r

= ω + δω + δ δθ ↓

= ω + ωδ + δω + δωδ δθ

A drill press has a pointed tool

which is used for boring holes in

hard materials usually by rotating

abrasion or repeated bolows.

Note : This picture is given as additional

information and is not a direct example

of the current chapter.
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Since δθ is very small, therefore substituting sin δθ = δθ in the above expression, we have

 1 . . . . . . . .yb r r r r= ω δθ + ωδ δθ + δω δθ + δω δ δθ

. . ,r= ω δθ ↓ acting radially inwards ...(Neglecting all other quantities)

and  by =  oy – ob = (ω + δω) (r + δr) cos δθ – ω.r

                       = (ω.r + ω.δr + δω.r  + δω.δr) cos δθ – ω.r

Since δθ is small, therefore substituting cos δθ = 1, we have

by = ω.r + ω.δr + δω.r + δω.δr – ω.r= ω.δr + r.δω ...(Neglecting δω.δr)

...(Perpendicular to OA and towards left)

Therefore, total component of change of velocity along radial direction

1 ( . . )bx yb v r= − = δ − ω δθ ↑ ...(Acting radially outwards from O to A )

∴  Radial component of the acceleration of the slider B with respect to O on the link OA,

acting radially outwards from O to A ,

2
BO

. .
Lt . .r v r dv d dv

a r r
t dt dt dt

δ − ω δθ θ= = − ω × = − ω ↑
δ

Also, the total component of change of velocity along tangential direction,

1 . ( . . )xb by v r r
← ←

= + = δθ + ωδ + δω
...(Perpendicular to OA and towards left)

∴  Tangential component of acceleration of the slider B with respect to O on the link OA,

acting perpendicular to OA and towards left,

BO

. ( . . )
Ltt v r r d dr d

a v r
t dt dt dt

δθ + ω δ + δω θ ω= = + ω +
δ

. . . (2 . . )v v r v r
←

= ω + ω + α = ω + α ...(ii)

...( / , and / )dr dt v d dt= ω = α�

Now radial component of acceleration of the coincident point C with respect to O, acting in

a direction from C to O,

               2
CO .r

a r= ω ↑ ...(iii)

and tangential component of acceleraiton of the coincident point C with respect to O, acting in a

direction perpendicular to CO and towards left,

CO .
t

a r
←

= α ↑ ...(iv)

Radial component of the slider B with respect to the coincident point C on the link OA,

acting radially outwards,

              ( )2 2
BC BO CO . .
r r r dvdv

a a a r r
dtdt

 = − = − = ↑− ω − ω  
and tangential component of the slider B with respect to the coincident point C on the link OA acting

in a direction perpendicular to OA and towards left,

( )BC BO CO . 2 .2 . .t t t
a a a r vv r

←
= − = − α = ωω + α

...( / )d dtθ = ω�

...(i)
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This tangential component of acceleration of the slider B with respect to the coincident

point C on the link is known as coriolis component of acceleration and is always perpendicualr to

the link.

∴  Coriolis component of the acceleration of B with respect of C,

BC BC 2 .c t
a a v= = ω

where ω = Angular velocity of the link OA, and

v = Velocity of slider B with respect to coincident point C.

In the above discussion, the anticlockwise direction for ω and the radially outward direction

for v are taken as positive. It may be noted that the direction of coriolis component of acceleration

changes sign, if either ω or v is reversed in direction. But the direction of coriolis component of

acceleration will not be changed in sign if both ω and v are reversed in direction. It is concluded that

the direction of coriolis component of acceleration is obtained by rotating v, at 90°, about its origin

in the same direction as that of ω.

Fig. 8.27. Direction of coriolis component of acceleration.

The direction of coriolis component of acceleration (2 ω.v) for all four possible cases, is

shown in Fig. 8.27. The directions of ω and v are given.

Example 8.13. A mechanism of a crank and slotted lever quick

return motion is shown in Fig. 8.28. If the crank rotates counter clockwise

at 120 r.p.m., determine for the configuration shown, the velocity and

acceleration of the ram D. Also determine the angular acceleration of

the slotted lever.

Crank, AB = 150 mm ; Slotted arm, OC = 700 mm and link

CD = 200 mm.

Solution.  Given : N
BA

 = 120 r.p.m or ω
BA

 = 2 π × 120/60

= 12.57 rad/s ; A B = 150 mm = 0.15 m; OC = 700 mm = 0.7 m;

CD = 200 mm = 0.2 m

We know that velocity of B with respect to A ,

BA BA

12.57 0.15 1.9 m/s

v AB= ω ×

= × =
...(Perpendicular to A B)

Velocity of the ram D

First of all draw the space diagram, to some suitable scale, as

shown in Fig. 8.29 (a). Now the velocity diagram, as shown in Fig. 8.29

Fig. 8.28
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(b), is drawn as discussed below:

1. Since O and A  are fixed points, therefore these points are marked as one point in velocity

diagram. Now draw vector ab in a direction perpendicular to A B , to some suitable scale, to represent

the velocity of slider B with respect to A i.e.v
BA

, such that

                    vector ab = v
BA

 = 1.9 m/s

(a) Space diagram. (b) Velocity diagram.

(c) Direction of coriolis component. (d) Acceleration diagram.

Fig. 8.29

2. From point o, draw vector ob' perpendicular to OB' to represent the velocity of coincident

point B' (on the link OC) with respect to O i.e. v
B′O and from point b draw vector bb' parallel to the

path of motion of B' (which is along the link OC) to represent the velocity of coincident point B' with

respect to the slider B i.e. v
B'B

. The vectors ob' and bb' intersect at b'.

Note:  Since we have to find the coriolis component of acceleration of the slider B with respect to the coincident

point B', therefore we require the velocity of B with respect to B'  i.e. v
BB'

. The vector b'b will represent v
BB'

as shown in Fig. 8.29 (b).

3. Since the point C lies on OB' produced, therefore, divide vector ob' at c in the same ratio

as C divides OB' in the space diagram. In other words,

/ /ob oc OB OC′ ′=
The vector oc represents the velocity of C with respect to O i.e. v

CO
.
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4. Now from point c, draw vector cd perpendicular to CD to represent the velocity of D with

respect to C i.e. v
DC 

,and from point o draw vector od parallel to the path of motion of D (which is

along the horizontal) to represent the velocity of D i.e. v
D

.The vectors cd and od intersect at d.

By measurement, we find that velocity of the ram D,

v
D

 = vector od = 2.15 m/s  Ans.

From velocity diagram, we also find that

Velocity of B with respect to B',

v
BB'

 = vector b'b = 1.05 m/s

Velocity of D with respect to C,

v
DC

 = vector cd = 0.45 m/s

Velocity of B' with respect to O

v
B′O = vector ob' = 1.55 m/s

Velocity of C with respect to O,

v
CO

 = vector oc = 2.15 m/s

∴  Angular velocity of the link OC or OB',

CO
CO B O

2.15
3.07 rad/s (Anticlockwise)

0.7

v

OC
′ω = ω = = =

Acceleration of the ram D

We know that radial component of the acceleration of B with respect to A ,

2 2 2
BA BA (12.57) 0.15 23.7 m/sr

a AB= ω × = × =
Coriolis component of the acceleration of slider B with respect to the coincident point B',

2
BB CO BB2 . 2 . 2 3.07 1.05 6.45 m/sc

a v v ′′ = ω = ω = × × =

CO BB...( and )v vω = ω = ′�

Radial component of the acceleration of D with respect to C,
2 2

2DC
DC

(0.45)
1.01 m/s

0.2

r v
a

CD
= = =

Radial component of the acceleration of the coincident point B' with respect to O,

2 2
2B O

B O

(1.55)
4.62 m/s

0.52

r v
a

B O

′
′ = = =

′ ...(By measurement B'O = 0.52 m)

Now the acceleration diagram, as shown in Fig. 8.29 (d), is drawn as discussed below:

1. Since O and A  are fixed points, therefore these points are marked as one point in the

acceleration diagram. Draw vector a'b' parallel to A B, to some suitable scale, to represent the radial

component of the acceleration of B with respect to A i.e. BA
r

a  or  a
B
, such that

2
BA Bvector 23.7 m/sr

a b a a′ ′ = = =

2. The acceleration of the slider B with respect to the coincident point B' has the following

two components :

(i) Coriolis component of the acceleration of B with respect to B' i.e. BB ,c
a ′ and

(ii) Radial component of the acceleration of B with respect to B' i.e. BB .r
a ′

These two components are mutually perpendicular. Therefore from point b' draw vector b'x

perpendicular to B'O i.e. in a direction as shown in Fig. 8.29 (c) to represent BB
c

a ′ = 6.45 m/s2. The
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direction of BB
c

a ′ is obtained by rotating vBB′ (represented by vector b'b in velocity diagram) through

90° in the same sense as that of link OC which rotates in the counter clockwise direction. Now from

point x, draw vector xb'' perpendicular to vector b'x (or parallel to B'O) to represent BB
r

a ′ whose

magnitude is yet unknown.

3. The acceleration of the coincident point B' with respect to O has also the following two

components:

(i) Radial component of the acceleration of coincident point B' with respect to O i.e.

B O’
r

a ′ and

(ii) Tangential component of the acceleration of coincident point B' with respect to O,

i.e. B O .t
a ′

These two components are mutually perpendicular. Therefore from point o', draw vector o'y

parallel to B'O to represent 2
B O 4.62 m/sr

a ′ = and from point y draw vector yb'' perpendicular to

vector o'y to represent B O .t
a ′ The vectors xb'' and yb'' intersect at b''. Join o'b''. The vector o'b''

represents the acceleration of B' with respect to O, i.e. a
B′O.

4. Since the point C lies on OB' produced, therefore divide vector o'b'' at c' in the same ratio

as C divides OB' in the space diagram. In other words,

o'b''/o'c' = OB'/OC

5. The acceleration of the ram D with respect to C has also the following two components:

(i) Radial component of the acceleration of D with respect to C i.e. DC,r
a and

(ii) Tangential component of the acceleration of D with respect to C, i.e. DC.t
a

The two components are mutually perpendicular. Therefore draw vector c'z parallel to CD

to represent 2
DC 1.01 m/sr

a = and from z draw zd' perpendicular to vector zc' to represent DC ,t
a whose

magnitude is yet unknown.

6. From point o', draw vector o'd' in the direction of motion of the ram D which is along the

horizontal. The vectors zd' and o'd' intersect at d'. The vector o'd' represents the acceleration of ram

D i.e. a
D

.

By measurement, we find that acceleration of the ram D,

a
D

 = vector o'd' = 8.4 m/s2 Ans.

Angular acceleration of the slotted lever

By measurement from acceleration diagram, we find that tangential component of the

coincident point B' with respect to O,

2
B O vector 6.4 m/st

a yb′ ′′= =
We know that angular acceleration of the slotted lever,

2B O 6.4
12.3 rad/s (Anticlockwise)

0.52

t
a

OB

′= = =
′ Ans.

Example 8.14. The driving crank AB of the quick-return mechanism, as shown in Fig. 8.30,

revolves at a uniform speed of 200 r.p.m. Find the velocity and acceleration of the tool-box R, in the

position shown, when the crank makes an angle of 60° with the vertical line of centres PA . What is

the acceleration of sliding of the block at B along the slotted lever PQ ?
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DO YOU KNOW ?

1. Explain how the acceleration of a point on a link (whose direction is known) is obtained when the

acceleration of some other point on the same link is given in magnitude and direction.

2. Draw the acceleration diagram of a slider crank mechanism.

3. Explain how the coriolis component of acceleration arises when a point is rotating about some other

fixed point and at the same time its distance from the fixed point varies.

4. Derive an expression for the magnitude and direction of coriolis component of acceleration.

5. Sketch a quick return motion of the crank and slotted lever type and explain the procedure of drawing

the velocity and acceleration diagram, for any given configuration of the mechanism.

OBJECTIVE TYPE QUESTIONS

1. The component of the acceleration, parallel to the velocity of the particle, at the given instant is

called

(a) radial component (b) tangential component

(c) coriolis component (d) none of these

2. A point B on a rigid link A B moves with respect to A  with angular velocity ω rad/s. The radial

component of the acceleration of B with respect to A ,

(a) v
BA

  × A B (b) v2
BA

 × A B (c)
BAv

AB
(d)

2
BAv

AB

where     v
BA

 = Linear velocity of B with respect to A  = ω × A B

3. A point B on a rigid link A B moves with respect to A  with angular velocity ω rad/s. The angular

acceleration of the link A B is

(a) BA
r

a

AB
(b) BA

t
a

AB
(c) v

BA
 × A B (d)

2
BAv

AB

4. A point B on a rigid link A B moves with respect to A  with angular velocity ω rad/s. The total

acceleration of B with respect to A  will be equal to

(a) vector sum of radial component and coriolis component

(b) vector sum of tangential component and coriolis component

(c) vector sum of radial component and tangential component

(d) vector difference of radial component and tangential component

5. The coriolis component of acceleration is taken into account for

(a) slider crank mechanism (b) four bar chain mechanism

(c) quick return motion mechanism (d) none of these

ANSWERS
1. (b) 2. (d) 3. (b) 4. (c) 5. (c)

GO To FIRST



 

MODULE-II 

 

Gear and Gear Trains: Gear Terminology and definitions, Theory of shape and 
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12
FFFFFeaeaeaeaeaturturturturtureseseseses
1. Introduction.

2. Friction Wheels.

3. Advantages and

Disadvantages of Gear Drive.

4. Classification of Toothed

Wheels.

5. Terms Used in Gears.

6. Gear Materials.

7. Law of Gearing.

8. Velocity of Sliding of Teeth.

9. Forms of Teeth.

10. Cycloidal Teeth.

11. Involute Teeth.

12. Effect of Altering the Centre

Distance.

13. Comparison Between Involute

and Cycloidal Gears.

14. Systems of Gear Teeth.

15. Standard Proportions of Gear

Systems.

16. Length of Path of Contact.

17. Length of Arc of Contact.

18. Contact Ratio

19. Interference in Involute

Gears.

20. Minimum Number of Teeth on

the Pinion.

21. Minimum Number of Teeth on

the Wheel.

22. Minimum Number of Teeth on

a Pinion for Involute Rack in

Order to Avoid Interference.

23. Helical Gears.

24. Spiral Gears.

25. Centre Distance For a Pair of

Spiral Gears.

26. Efficiency of Spiral Gears.

12.1.12.1.12.1.12.1.12.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

We have discussed in the previous chapter, that the

slipping of a belt or rope is a common phenomenon, in the

transmission of motion or power between two shafts. The

effect of slipping is to reduce the velocity ratio of the system.

In precision machines, in which a definite velocity ratio is of

importance (as in watch mechanism), the only positive drive

is by means of gears or toothed wheels. A gear drive is also

provided, when the distance between the driver and the fol-

lower is very small.

12.2.12.2.12.2.12.2.12.2. Friction WheelsFriction WheelsFriction WheelsFriction WheelsFriction Wheels

The motion and power transmitted by gears is kine-

matically equivalent to that transmitted by friction wheels or

discs. In order to

understand how

the motion can be

transmitted by

two toothed

wheels, consider

two plain circular

wheels A and B

mounted on

shafts, having sufficient rough surfaces and pressing against

each other as shown in Fig. 12.1 (a).

CONTENTSCONTENTS

CONTENTSCONTENTS
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Let the wheel A  be keyed to the rotating shaft and the wheel B to the shaft, to be rotated. A

little consideration will show, that when the wheel A  is rotated by a rotating shaft, it will rotate the

wheel B in the opposite direction as shown in Fig. 12.1 (a).

The wheel B will be rotated (by the wheel A ) so long as the tangential force exerted by the

wheel A  does not exceed the maximum frictional resistance between the two wheels. But when the

tangential force (P) exceeds the *frictional resistance (F), slipping will take place between the two

wheels. Thus the friction drive is not a positive drive.

        

(a) Friction wheels. (b) Toothed wheels.

Fig. 12.1

In order to avoid the slipping, a number of projections (called teeth) as shown in

Fig. 12.1 (b), are provided on the periphery of the wheel A , which will fit into the corresponding

recesses on the periphery of the wheel B. A friction wheel with the teeth cut on it is known as toothed

wheel or gear. The usual connection to show the toothed wheels is by their **pitch circles.

Note :  Kinematically, the friction wheels running without slip and toothed gearing are identical. But due to the

possibility of slipping of wheels, the friction wheels can only be used for transmission of small powers.

12.3. Advantages and Disadvantages of Gear Drive

The following are the advantages and disadvantages of the gear drive as compared to belt,

rope and chain drives :

Advantages

1. It transmits exact velocity ratio.

2. It may be used to transmit large power.

3. It has high efficiency.

4. It has reliable service.

5. It has compact layout.

Disadvantages

1. The manufacture of gears require special tools and equipment.

2. The error in cutting teeth may cause vibrations and noise during operation.

* The frictional force F is equal to µ. R
N

, where µ = Coefficient of friction between the rubbing surface of

two wheels, and R
N

 = Normal reaction between the two rubbing surfaces.

** For details, please refer to Art. 12.4.
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12.4. Classification of Toothed Wheels

The gears or toothed wheels may be classified as follows :

1.  According to the position of axes of the shafts. The axes of the two shafts between which

the motion is to be transmitted, may be

(a)  Parallel,   (b)  Intersecting, and   (c)  Non-intersecting and non-parallel.

The two parallel and co-planar shafts connected by the gears is shown in Fig. 12.1. These

gears are called spur gears and the arrangement is known as spur gearing. These gears have teeth

parallel to the axis of the wheel as shown in Fig. 12.1. Another name given to the spur gearing is

helical gearing, in which the teeth are inclined to the axis. The single and double helical gears con-

necting parallel shafts are shown in Fig. 12.2 (a) and (b) respectively. The double helical gears are

known as herringbone gears. A pair of spur gears are kinematically equivalent to a pair of cylindrical

discs, keyed to parallel shafts and having a line contact.

The two non-parallel or intersecting, but coplanar shafts connected by gears is shown in Fig.

12.2 (c). These gears are called bevel gears and the arrangement is known as bevel gearing. The

bevel gears, like spur gears, may also have their teeth inclined to the face of the bevel, in which case

they are known as helical bevel gears.

The two non-intersecting and non-parallel i.e. non-coplanar shaft connected by gears is shown

in Fig. 12.2 (d). These gears are called skew bevel gears or spiral gears and the arrangement is

known as skew bevel gearing or spiral gearing. This type of gearing also have a line contact, the

rotation of which about the axes generates the two pitch surfaces known as hyperboloids.

Notes : (a) When equal bevel gears (having equal teeth) connect two shafts whose axes are mutually perpen-

dicular, then the bevel gears are known as mitres.

(b) A hyperboloid is the solid formed by revolving a straight line about an axis (not in the same

plane), such that every point on the line remains at a constant distance from the axis.

(c) The worm gearing is essentially a form of spiral gearing in which the shafts are usually at  right

angles.

(a) Single helical gear. (b) Double helical gear. (c) Bevel gear. (d) Spiral gear.

Fig. 12.2

2.  According to the peripheral velocity of the gears. The gears, according to the peripheral

velocity of the gears may be classified as :

(a)  Low velocity,  (b)  Medium velocity, and  (c)  High velocity.

  The gears having velocity less than 3 m/s are termed as low velocity gears and gears having

velocity between 3 and 15 m/s are known as medium velocity gears. If the velocity of gears is more

than 15 m/s, then these are called high speed gears.
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3.  According to the type of gearing. The gears, according to the type of gearing may be

classified as :

(a) External gearing,  (b) Internal gearing, and  (c) Rack and pinion.

In external gearing, the gears of the two shafts mesh externally with each other as shown in Fig.

12.3 (a). The larger of these two wheels is called spur wheel and the smaller wheel is called pinion. In

an external gearing, the motion of the two wheels is always unlike, as shown in Fig. 12.3 (a).

(a) External gearing. (b) Internal gearing.

Fig. 12.3 Fig. 12.4. Rack and pinion.

In internal gearing, the gears of the two shafts mesh internally with each other as shown in

Fig. 12.3 (b). The larger of these two wheels is called annular wheel and the smaller wheel is called

pinion. In an internal gearing, the motion of the two wheels is always like, as shown in Fig. 12.3 (b).

Spiral Gears

Helical Gears

Double helical gears
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Sometimes, the gear of a shaft meshes externally and internally with the gears in a *straight

line, as shown in Fig. 12.4. Such type of gear is called rack and pinion. The straight line gear is called

rack and the circular wheel is called pinion. A little consideration will show that with the help of a

rack and pinion, we can convert linear motion into rotary motion and vice-versa as shown in Fig.

12.4.

4.  According to position of teeth on the gear surface. The teeth on the gear surface may be

(a) straight,  (b) inclined, and  (c) curved.

We have discussed earlier that the spur gears have straight teeth where as helical gears have

their teeth inclined to the wheel rim. In case of spiral gears, the teeth are curved over the rim surface.

12.5. Terms Used in Gears

The following terms, which will be mostly used in this chapter, should be clearly understood

at this stage. These terms are illustrated in Fig. 12.5.

Fig. 12.5. Terms used in gears.

1. Pitch circle.  It is an imaginary circle which by pure rolling action, would give the same

motion as the actual gear.

Internal gears

* A straight line may also be defined as a wheel of infinite radius.

Rack and pinion
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2. Pitch circle diameter.  It is the diameter of the pitch circle. The size of the gear is usually

specified by the pitch circle diameter. It is also known as pitch diameter.

3. Pitch point.  It is a common point of contact between two pitch circles.

4. Pitch surface.  It is the surface of the rolling discs which the meshing gears have replaced

at the pitch circle.

5. Pressure angle or angle of obliquity.  It is the angle between the common normal to two

gear teeth at the point of contact and the common tangent at the pitch point. It is usually denoted by φ.

The standard pressure angles are 1
2

14 ° and 20°.

6. Addendum.  It is the radial distance of a tooth from the pitch circle to the top of the tooth.

7. Dedendum.  It is the radial distance of a tooth from the pitch circle to the bottom of the tooth.

8. Addendum circle.  It is the circle drawn through the top of the teeth and is concentric with

the pitch circle.

9. Dedendum circle.  It is the circle drawn through the bottom of the teeth. It is also called

root circle.

Note :  Root circle diameter = Pitch circle diameter × cos φ, where φ is the pressure angle.

10. Circular pitch.  It is the distance measured on the circumference of the pitch circle from

a point of one tooth to the corresponding point on the next tooth. It is usually denoted by p
c
.

Mathematically,

Circular pitch, p
c

= π D/T

where D = Diameter of the pitch circle, and

T = Number of teeth on the wheel.

A little consideration will show that the two gears will mesh together correctly, if the two

wheels have the same circular pitch.

Note :  If D
1
 and D

2
 are the diameters of the two meshing gears having the teeth T

1
 and T

2
 respectively, then for

them to mesh correctly,

1 2 1 1

1 2 2 2

orc

D D D T
p

T T D T

π π= = =

11. Diametral pitch.  It is the ratio of number of teeth to the pitch circle diameter in millimetres.

It is denoted by p
d
 . Mathematically,

Diametral pitch, d

c

T
p

D p

π= = ... c

D
p

T

π =  
�

where T = Number of teeth, and

D = Pitch circle diameter.

12. Module.  It is the ratio of the pitch circle diameter in millimeters to the number of teeth.

It is usually denoted by m. Mathematically,

Module,  m = D /T

Note : The recommended series of modules in Indian Standard are 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16,

and 20. The modules 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 9, 11, 14 and 18 are of second choice.

13. Clearance.  It is the radial distance from the top of the tooth to the bottom of the tooth, in

a meshing gear. A circle passing through the top of the meshing gear is known as clearance circle.

14. Total depth.  It is the radial distance between the addendum and the dedendum circles of

a gear. It is equal to the sum of the addendum and dedendum.
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* For details, see Art. 12.16.

** For details, see Art. 12.17.

15. Working depth.  It is the radial distance from the addendum circle to the clearance circle.

It is equal to the sum of the addendum of the two meshing gears.

16. Tooth thickness.  It is the width of the tooth measured along the pitch circle.

17. Tooth space .  It is the width of  space between the two adjacent teeth measured along the pitch

circle.

18. Backlash.  It is the difference between the tooth space and the tooth thickness, as mea-

sured along the pitch circle. Theoretically, the backlash should be zero, but in actual practice some

backlash must be allowed to prevent jamming of the teeth due to tooth errors and thermal expansion.

19. Face of tooth.  It is the surface of the gear tooth above the pitch surface.

20. Flank of tooth.  It is the surface of the gear tooth below the pitch surface.

21. Top land.  It is the surface of the top of the tooth.

22. Face width.  It is the width of the gear tooth measured parallel to its axis.

23. Profile.  It is the curve formed by the face and flank of the tooth.

24. Fillet radius.  It is the radius that connects the root circle to the profile of the tooth.

25. Path of contact.  It is the path traced by the point of contact of two teeth from the

beginning to the end of engagement.

26. *Length of the path of contact.  It is the length of the common normal cut-off by the

addendum circles of the wheel and pinion.

27. ** Arc of contact.  It is the path traced by a point on the pitch circle from the beginning

to the end of engagement of a given pair of teeth. The arc of contact consists of two parts, i.e.

(a) Arc of approach.  It is the portion of the path of contact from the beginning of the

engagement to the pitch point.

(b) Arc of recess.  It is the portion of the path of contact from the pitch point to the end of the

engagement of a pair of teeth.

Note :   The ratio of the length of arc of contact to the circular pitch is known as contact ratio i.e. number of pairs

of teeth in contact.

12.6. Gear Materials

The material used for the manufacture of gears depends upon the strength and service condi-

tions like wear, noise etc. The gears may be manufactured from metallic or non-metallic materials.

The metallic gears with cut teeth are commercially obtainable in cast iron, steel and bronze. The non-

metallic materials like wood, raw hide, compressed paper and synthetic resins like nylon are used for

gears, especially for reducing noise.

The cast iron is widely used for the manufacture of gears due to its good wearing properties,

excellent machinability and ease of producing complicated shapes by casting method. The cast iron

gears with cut teeth may be employed, where smooth action is not important.

The steel is used for high strength gears and steel may be plain carbon steel or alloy steel. The

steel gears are usually heat treated in order to combine properly the toughness and tooth hardness.

The phosphor bronze is widely used for worm gears in order to reduce wear of the worms

which will be excessive with cast iron or steel.

12.7. Condition for Constant Velocity Ratio of Toothed Wheels–Law of
Gearing

Consider the portions of the two teeth, one on the wheel 1 (or pinion) and the other on the
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wheel 2, as shown by thick line curves in Fig. 12.6. Let the two teeth

come in contact at point Q, and the wheels rotate in the directions as

shown in the figure.

Let T T be the common tangent and M N be the

common normal to the curves at the point of contact Q. From the

centres O
1
 and O

2 
, draw O

1
M and O

2
N perpendicular to MN. A

little consideration will show that the point Q moves in the direction

QC, when considered as a point on wheel 1, and in the direction

QD when considered as a point on wheel 2.

Let v
1
 and v

2
 be the velocities of the point Q on the wheels

1 and 2 respectively. If the teeth are to remain in contact, then the

components of these velocities along the common normal MN must

be equal.

∴ 1 2cos cosv vα = β

      

1 1 2 2

1 2
1 1 2 2 1 1 2 2

1 2

( ) cos ( ) cos

( ) ( ) or

O Q O Q

O M O N
O Q O Q O M O N

O Q O Q

ω × α = ω × β

ω × = ω × ω × = ω ×

∴ 1 2

2 1

O N

O M

ω =
ω

…(i)

Also from similar triangles O
1
MP and O

2
NP,

2 2

1 1

O N O P

O M O P
= ...(ii)

Combining equations (i) and (ii), we have

1 2 2

2 1 1

O N O P

O M O P

ω = =
ω

...(iii)

From above, we see that the angular velocity ratio is inversely proportional to the ratio of the

distances of the point P from the centres O
1
 and O

2
, or the common normal to the two surfaces at the

point of contact Q intersects the line of centres at point P which divides the centre distance inversely

as the ratio of angular velocities.

Therefore in order to have a constant angular velocity ratio for all positions of the wheels, the

point P must be the fixed point (called pitch point) for the two wheels. In other words, the common

normal at the point of contact between a pair of teeth must always pass through the pitch point.

This is the fundamental condition which must be satisfied while designing the profiles for the teeth of

gear wheels. It is also known as law of gearing.

Notes : 1. The above condition is fulfilled by teeth of involute form, provided that the root circles from which

the profiles are generated are tangential to the common normal.

2. If the shape of one tooth profile is arbitrarily chosen and another tooth is designed to satisfy the

above condition, then the second tooth is said to be conjugate to the first. The conjugate teeth are not in common

use because of difficulty in manufacture, and cost of production.

3. If D
1
 and D

2
 are pitch circle diameters of wheels 1 and 2 having teeth T

1
 and T

2
 respectively, then

velocity ratio,

            
1 2 2 2

2 1 1 1

O P D T

O P D T

ω
= = =

ω

Fig. 12.6. Law of gearing.

or
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12.8. Velocity of Sliding of Teeth

The sliding between a pair of teeth in contact at Q occurs along the common tangent T T to

the tooth curves as shown in Fig. 12.6. The velocity of sliding is the velocity of one tooth relative to

its mating tooth along the common tangent at the point of contact.

The velocity of point Q, considered as a point on wheel 1, along the common tangent T T is

represented by EC. From similar triangles QEC and O
1
MQ,

                                   1 1

1

or .
EC v

EC MQ
MQ O Q

= = ω = ω

Similarly, the velocity of point Q, considered as a point on wheel 2, along the common tan-

gent T T is represented by ED. From similar triangles QCD and O
2
 NQ,

2
2 2

2

or .
vED

ED QN
QN O Q

= = ω = ω

Let S Velocity of sliding at .v Q=

∴ S 2 1. .v ED EC QN MQ= − = ω −ω

2 1( ) ( )QP PN MP QP= ω + − ω −

1 2 2 1( ) . .QP PN MP= ω + ω + ω − ω ...(i)

Since 1 2
1 2

2 1

or . . ,
O P PN

MP PN
O P MP

ω = = ω =ω
ω

therefore equation (i) becomes

S 1 2( )v QP= ω + ω ...(ii)

Notes : 1. We see from equation (ii), that the velocity of sliding is proportional to the distance of the point

of contact from the pitch point.

2. Since the angular velocity of wheel 2 relative to wheel 1 is (ω
1
 + ω

2
 ) and P is the instantaneous

centre for this relative motion, therefore the value of v
s
 may directly be written as v

s
  (ω

1
 + ω

2
 ) QP, without the

above analysis.

12.9. Forms of Teeth

We have discussed in Art. 12.7 (Note 2)

that conjugate teeth are not in common use.

Therefore, in actual practice following are the two

types of teeth commonly used :

1.  Cycloidal teeth ; and 2. Involute teeth.

We shall discuss both the above mentioned

types of teeth in the following articles. Both these

forms of teeth satisfy the conditions as discussed

in Art. 12.7.

12.10. Cycloidal Teeth

A cycloid is the curve traced by a point on the circumference of a circle which rolls without

slipping on a fixed straight line. When a circle rolls without slipping on the outside of a fixed circle,

the curve traced by a point on the circumference of a circle is known as epi-cycloid. On the other

hand, if a circle rolls without slipping on the inside of a fixed circle, then the curve traced by a point

on the circumference of a circle is called hypo-cycloid.
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In Fig. 12.7 (a), the fixed line or pitch line of a rack is shown. When the circle C rolls without

slipping above the pitch line in the direction as indicated in Fig. 12.7 (a), then the point P on the circle

traces epi-cycloid PA . This represents the face of the cycloidal tooth profile. When the circle D rolls

without slipping below the pitch line, then the point P on the circle D traces hypo-cycloid PB, which

represents the flank of the cycloidal tooth. The profile BPA  is one side of the cycloidal rack tooth.

Similarly, the two curves P' A'  and  P'B' forming the opposite side of the tooth profile are traced by

the point P' when the circles C and D roll in the opposite directions.

In the similar way, the cycloidal teeth of a gear may be constructed as shown in Fig. 12.7 (b).

The circle C is rolled without slipping on the outside of the pitch circle and the point P on the circle

C traces epi-cycloid PA , which represents the face of the cycloidal tooth. The circle D is rolled on the

inside of pitch circle and the point P on the circle D traces hypo-cycloid PB, which represents the

flank of the tooth profile. The profile BPA  is one side of the cycloidal tooth. The opposite side of the

tooth is traced as explained above.

The construction of the two mating cycloidal teeth is shown in Fig. 12.8. A point on the circle

D will trace the flank of the tooth T
1
 when circle D rolls without slipping on the inside of pitch circle

of wheel 1 and face of tooth T
2
 when the circle D rolls without slipping on the outside of pitch circle

of wheel 2. Similarly, a point on the circle C will trace the face of tooth T
1
 and flank of tooth T

2
. The

rolling circles C and D may have unequal diameters, but if several wheels are to be interchangeable,

they must have rolling circles of equal diameters.

Fig. 12.8. Construction of two mating cycloidal teeth.

A little consideration will show, that the common normal X X at the point of contact between

two cycloidal teeth always passes through the pitch point, which is the fundamental condition for a

constant velocity ratio.

  (a) (b)

   Fig. 12.7. Construction of cycloidal teeth of a gear.
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12.11. Involute Teeth

An involute of a circle is a plane curve generated by a

point on a tangent, which rolls on the circle without slipping or

by a point on a taut string which in unwrapped from a reel as

shown in Fig. 12.9. In connection with toothed wheels, the circle

is known as base circle. The involute is traced as follows :

Let A  be the starting point of the involute. The base

circle is divided into equal number of parts e.g. AP
1
, P

1
P

2
,

P
2
P

3
 etc. The tangents at P

1
, P

2
, P

3
 etc. are drawn and the

length P
1
A

1
, P

2
A

2
, P

3
A

3
 equal to the arcs AP

1
, AP

2
 and AP

3
 are

set off. Joining the points A , A
1
, A

2
, A

3
 etc. we obtain the involute

curve A R. A little consideration will show that at any instant

A
3
, the tangent A

3
T to the involute is perpendicular to P

3
A

3
 and P

3
A

3
 is the normal to the involute. In

other words, normal at any point of an involute is a tangent to the circle.

Now, let O
1
 and O

2
 be the fixed centres of the two base circles as shown in Fig. 12.10 (a). Let

the corresponding involutes A B and A
1
B

1
 be in contact at point Q. MQ and NQ are normals to the

involutes at Q and are tangents to base circles. Since the normal of an involute at a given point is the

tangent drawn from that point to the base circle, therefore the common normal MN at Q is also the

common tangent to the two base circles. We see that the common normal MN intersects the line of

centres O
1
O

2
 at the fixed point P (called pitch point). Therefore the involute teeth satisfy the

fundamental condition of constant velocity ratio.

(a) (b)

Fig. 12.10. Involute teeth.

From similar triangles O
2
NP and O

1
MP,

1 1 2

2 2 1

O M O P

O N O P

ω= =
ω ... (i)

which determines the ratio of the radii of the two base circles. The radii of the base circles is given by

1 1 2 2cos , and cosO M O P O N O P= φ = φ
Also the centre distance between the base circles,

1 2 1 2
1 2 1 2

cos cos cos

O M O N O M O N
O O O P O P

+= + = + =
φ φ φ

Fig. 12.9. Construction of involute.
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where φ is the pressure angle or the angle of obliquity. It is the angle which the common normal to the

base circles  (i.e. MN) makes with the common tangent to the pitch circles.

When the power is being transmitted, the maximum tooth pressure (neglecting friction at the

teeth) is exerted along the common normal through the pitch point. This force may be resolved into

tangential and radial or normal components. These components act along and at right angles to the

common tangent to the pitch circles.

If F is the maximum tooth pressure as shown in Fig. 12.10 (b), then

Tangential force, F
T
 = F cos φ

and radial or normal force, F
R
 = F sin φ.

∴    Torque exerted on the gear shaft

= F
T
 × r, where r is the pitch circle radius of the gear.

Note : The tangential force provides the driving torque and the radial or normal force produces radial deflection

of the rim and bending of the shafts.

12.12.Effect of Altering the Centre Distance on the Velocity Ratio for
Involute Teeth  Gears

In the previous article, we have seen that the velocity ratio for the involute teeth gears is given by

1 1 2

2 2 1

O M O P

O N O P

ω= =
ω

...(i)

Let, in Fig. 12.10 (a), the centre of rotation of one of the gears (say wheel 1) is shifted from

O
1
 to O

1
' . Consequently the contact point shifts from Q to Q '. The common normal to the teeth at the

point of contact Q ' is the tangent to the base circle, because it has a contact between two involute

curves and they are generated from the base circle. Let the tangent M' N'  to the base circles intersects

1O
′ O

2
 at the pitch point P' . As a result of this, the wheel continues to work* correctly.

Now from similar triangles O
2
NP and O

1
MP,

1 1

2 2

O M O P

O N O P
= ...(ii)

and from similar triangles O
2
N'P' and O

1
'M'P',

1 1

2 2

O M O P

O N O P

′ ′′′ =
′ ′ ...(iii)

But O
2
N = O

2
N', and O

1
M = O

1
' M'. Therefore from equations (ii) and (iii),

1 1

2 2

O P O P

O P O P

′′
=

′ ...[Same as equation (i)]

Thus we see that if the centre distance is changed within limits, the velocity ratio remains

unchanged. However, the pressure angle increases (from φ to φ′) with the increase in the centre

distance.

Example 12.1.  A single reduction gear of 120 kW with a pinion 250 mm pitch circle diameter

and speed 650 r.p.m. is supported in bearings on either side. Calculate the total load due to the

power transmitted, the pressure angle being 20°.

Solution.  Given : P = 120 kW = 120 × 103 W ; d = 250 mm or r = 125 mm = 0.125 m ;

N = 650 r.p.m. or ω = 2π × 650/60 = 68 rad/s ; φ = 20°

* It is not the case with cycloidal teeth.
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Let T = Torque transmitted in N-m.

We know that power transmitted (P),

120 × 103 = T.ω = T × 68        or     T = 120 × 103/68 = 1765 N-m

and tangential load on the pinion,

F
T
 = T /r = 1765 / 0.125 = 14 120 N

∴   Total load due to power transmitted,

F = F
T 

/ cos φ = 14 120 / cos 20° = 15 026 N = 15.026 kN Ans.

12.13. Comparison Between Involute and Cycloidal Gears

In actual practice, the involute gears are more commonly used as compared to cycloidal

gears, due to the following advantages :

 Advantages of involute gears

Following are the advantages of involute gears :

1.  The most important advantage of the involute gears is that the centre distance for a pair of

involute gears can be varied within limits without changing the velocity ratio. This is not true for

cycloidal gears which requires exact centre distance to be maintained.

2.  In involute gears, the pressure angle, from the start of the engagement of teeth to the end

of the engagement, remains constant. It is necessary for smooth running and less wear of gears. But in

cycloidal gears, the pressure angle is maximum at the beginning of engagement, reduces to zero at

pitch point, starts decreasing and again becomes maximum at the end of engagement. This results in

less smooth running of gears.

3.  The face and flank of involute teeth are generated by a single curve where as in cycloidal

gears, double curves (i.e. epi-cycloid and hypo-cycloid) are required for the face and flank respec-

tively. Thus the involute teeth are easy to manufacture than cycloidal teeth. In involute system, the

basic rack has straight teeth and the same can be cut with simple tools.

Note :  The only disadvantage of the involute teeth is that the interference occurs (Refer Art. 12.19) with pinions

having smaller number of teeth. This may be avoided by altering the heights of addendum and dedendum of the

mating teeth or the angle of obliquity of the teeth.

Advantages of cycloidal gears

Following are the advantages of cycloidal gears :

1.  Since the cycloidal teeth have wider flanks, therefore the cycloidal gears are stronger than

the involute gears, for the same pitch. Due to this reason, the cycloidal teeth are preferred specially

for cast teeth.

2.  In cycloidal gears, the contact takes place between a convex flank and concave surface,

whereas in involute gears, the convex surfaces are in contact. This condition results in less wear in

cycloidal gears as compared to involute gears. However the difference in wear is negligible.

3.  In cycloidal gears, the interference does not occur at all. Though there are advantages of

cycloidal gears but they are outweighed by the greater simplicity and flexibility of the involute

gears.

12.14. Systems of Gear Teeth

The following four systems of gear teeth are commonly used in practice :

1. 1
2

14 °  Composite system,  2. 1
2

14 °  Full depth involute system,  3. 20° Full depth involute

system, and  4. 20° Stub involute system.

The 1
2

14 ° composite system is used for general purpose gears. It is stronger but has no inter-
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changeability. The tooth profile of this system has cycloidal curves at the top and bottom and involute

curve at the middle portion. The teeth are produced by formed milling cutters or hobs. The tooth

profile of the 1
2

14 ° full depth involute system was developed for use with gear hobs for spur and

helical gears.

The tooth profile of the 20° full depth involute system may be cut by hobs. The increase of

the pressure angle from 1
2

14 ° to 20° results in a stronger tooth, because the tooth acting as a beam is

wider at the base. The 20° stub involute system has a strong tooth to take heavy loads.

12.15. Standard Proportions of Gear Systems

The following table shows the standard proportions in module (m) for the four gear systems

as discussed in the previous article.

Table 12.1. Standard proportions of gear systems.

S. No. Particulars
1
2

°14 composite or full 20° full depth 20° stub involute

depth involute system involute system system

1. Addenddm 1 m 1 m 0.8 m

2. Dedendum 1.25 m 1.25 m 1 m

3. Working depth 2 m 2 m 1.60 m

4. Minimum total depth 2.25 m 2.25 m 1.80 m

5. Tooth thickness 1.5708 m 1.5708 m 1.5708 m

6. Minimum clearance 0.25 m 0.25 m 0.2 m

7. Fillet radius at root 0.4 m 0.4 m 0.4 m

12.16. Length of Path of Contact

Consider a pinion driving the wheel as shown in Fig. 12.11. When the pinion rotates in

clockwise direction, the contact between a pair of involute teeth begins at K (on the flank near the

base circle of pinion or the outer end of the tooth face on the wheel) and* ends at L (outer end of the

tooth face on the pinion or on the flank near the base circle of wheel). MN is the common normal at

the point of contacts and the common tangent to the base circles. The point K is the intersection of the

addendum circle of wheel and the common tangent. The point  L is the intersection of the addendum

circle of pinion and common tangent.

Fig. 12.11. Length of path of contact.

* If the wheel is made to act as a driver and the directions of motion are reversed, then the contact between

a pair of teeth begins at L and ends at K .
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We have discussed in Art. 12.4 that the length

of path of contact is the length of common normal cut-

off by the addendum circles of the wheel and the pinion.

Thus the length of path of contact is KL which is the sum

of the parts of the path of contacts KP and PL. The part

of the path of contact KP is known as path of approach

and the part of the path of contact PL is known as path

of recess.

Let r
A

= O
1
L = Radius of addendum

circle of pinion,

R
A

= O
2
K = Radius of addendum

circle of wheel,

r = O
1
P = Radius of pitch circle of

pinion, and

R = O
2
P = Radius of pitch circle of

                                      wheel.

From Fig. 12.11, we find that radius of the base circle of pinion,

           O
1
M = O

1
P cos φ = r cos φ

and radius of the base circle of wheel,

           O
2
N = O

2
P cos φ = R cos φ

Now from right angled triangle O
2
KN,

( )22 2 2 2
2 2 A( ) ( ) cosKN O K O N RR= − = − φ

and 2 sin sinPN O P R= φ= φ
∴   Length of the part of the path of contact, or the path of approach,

( )2 2 2
A cos sinKP KN PN R RR= − = − φ− φ

Similarly from right angled triangle O
1
ML,

and 2 2 2 2 2
1 1 A( ) ( ) ( ) cosML O L O M r r= − = − φ

1 sin sinMP O P r= φ = φ
 ∴    Length of the part of the path of contact, or path of recess,

2 2 2
A( ) cos sinPL ML MP r r r= − = − φ − φ

 ∴   Length of the path of contact,

2 2 2 2 2 2
A A( ) cos ( ) cos ( )sinKL KP PL R R r r R r= + = − φ + − φ − + φ

12.17. Length of Arc of Contact

We have already defined that the arc of contact is the path traced by a point on the pitch circle

from the beginning to the end of engagement of a given pair of teeth. In Fig. 12.11, the arc of contact

is EPF or GPH. Considering the arc of contact GPH, it is divided into two parts i.e. arc GP and arc

PH. The arc GP is known as arc of approach and the arc PH is called arc of recess. The angles

subtended by these arcs at O
1
 are called angle of approach and angle of recess respectively.

Bevel  gear
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We know that the length of the arc of approach (arc GP)

Length of path of approach

cos cos

KP= =
φ φ

and the length of the arc of recess (arc PH)

Length of path of recess

cos cos

PL= =
φ φ

Since the length of the arc of contact GPH is equal to the sum of the length of arc of approach

and arc of recess, therefore,

Length of the arc of contact

arc arc
cos cos cos

Length of path of contact

cos

KP PL KL
GP PH= + = + =

φ φ φ

=
φ

12.18. Contact Ratio (or Number of Pairs of Teeth in Contact)

The contact ratio or the number of pairs of teeth in contact is defined as the ratio of the

length of the arc of contact to the circular pitch. Mathematically,

Contact ratio or number of pairs of teeth in contact

  
Length of the arc of contact

cp
=

where Circular pitch , andcp m= = π

Module.m =
Notes :  1.  The contact ratio, usually, is not a whole number. For example, if the contact ratio is 1.6, it does not

mean that there are 1.6 pairs of teeth in contact. It means that there are alternately one pair and two pairs of teeth

in contact and on a time basis the average is 1.6.

2. The theoretical minimum value for the contact ratio is one, that is there must always be at least one

pair of teeth in contact for continuous action.

3. Larger the contact ratio, more quietly the gears will operate.

Example 12.2.  The number of teeth on each of the two equal spur gears in mesh are 40. The

teeth have 20° involute profile and the module is 6 mm. If the arc of contact is 1.75 times the circular

pitch, find the addendum.

Solution.  Given : T = t = 40 ; φ = 20° ; m = 6 mm

We know that the circular pitch,

p
c
 = π m = π × 6 = 18.85 mm

∴  Length of arc of contact

= 1.75 p
c
 = 1.75 × 18.85 = 33 mm

and length of path of contact

= Length of arc of contact × cos φ = 33 cos 20° = 31 mm

Let R
A

 = r
A

 = Radius of the addendum circle of each wheel.

We know that pitch circle radii of each wheel,

R = r = m.T / 2 = 6 × 40/2 = 120 mm
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and length of path of contact

2 2 2 2 2 2
A A31 ( ) cos ( ) cos ( ) sinR R r r R r= − φ + − φ − + φ

2 2 2
A

2 ( ) cos sinR R R = − φ − φ  ...(∵ R = r, and R
A

 = r
A

)

2 2 2
A

31
( ) (120) cos 20 120 sin 20

2
R= − ° − °

2
15.5 ( ) 12 715 41AR= − −

2 2
A(15.5 41) ( ) 12 715R+ = −

2
A A3192 12 715 ( ) or 126.12 mmR R+ = =

We know that the addendum of the wheel,

               = A 126.12 120 6.12 mmR R− = − =  Ans.

Example 12.3.  A pinion having 30 teeth drives a

gear having 80 teeth. The profile of the gears is involute

with 20° pressure angle, 12 mm module and 10 mm

addendum. Find the length of path of contact, arc of contact

and the contact ratio.

Solution. Given : t = 30 ; T  = 80 ; φ  = 20° ;

m = 12 mm ; Addendum = 10 mm

Length of path of contact

We know that pitch circle radius of pinion,

r = m.t / 2 = 12 × 30 / 2 = 180 mm

and pitch circle radius of gear,

R = m.T / 2 = 12 × 80 / 2 = 480 mm

∴   Radius of addendum circle of pinion,

r
A

 = r +  Addendum = 180 + 10 = 190 mm

and radius of addendum circle of gear,

R
A

 = R + Addendum = 480 + 10 = 490 mm

We know that length of the path of approach,

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig.12.11)

2 2 2
(490) (480) cos 20 480 sin 20= − ° − ° 191.5 164.2 27.3 mm= − =

and length of the path of recess,

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2
(190) (180) cos 20 180 sin 20= − ° − ° 86.6 61.6 25 mm= − =

We know that length of path of contact,

KL = KP + PL = 27.3 + 25 = 52.3 mm  Ans.

Worm.
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Length of arc of contact

We know that length of arc of contact

Length of path of contact 52.3
55.66 mm

cos cos 20
= = =

φ °
 Ans.

Contact ratio

We know that circular pitch,

p
c
 = π.m = π × 12 = 37.7 mm

∴    Length of arc of contact 55.66
Contact ratio = 1.5 say 2

37.7cp
= =  Ans.

Example 12.4.  Two involute gears of 20° pressure angle are in mesh. The number of teeth

on pinion is 20 and the gear ratio is 2. If the pitch expressed in module is 5 mm and the pitch line

speed is 1.2 m/s, assuming addendum as standard and equal to one module, find :

1. The angle turned through by pinion when one pair of teeth is in mesh ; and

2. The maximum velocity of sliding.

Solution. Given : φ = 20° ; t = 20; G = T/t = 2; m = 5 mm ; v = 1.2 m/s ; addendum = 1 module

= 5 mm

1. Angle turned through by pinion when one pair of teeth is in mesh

We know that pitch circle radius of pinion,

r = m.t / 2 = 5 × 20 / 2 = 50 mm

and pitch circle radius of wheel,

R = m.T / 2 = m.G.t / 2 = 2 × 20 × 5 / 2 = 100 mm ... ( . )T G t=�

∴  Radius of addendum circle of pinion,

rA = r + Addendum = 50 + 5 = 55 mm

and radius of addendum circle of wheel,

RA = R + Addendum = 100 + 5 = 105 mm

We know that length of the path of approach (i.e. the path of contact when engagement

occurs),

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig.12.11)

2 2 2
= (105) (100) cos 20 100 sin 20− ° − °

46.85 34.2 12.65 mm= − =

and the length of path of recess (i.e. the path of contact when disengagement occurs),

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2
(55) (50) cos 20 50 sin 20 28.6 17.1 11.5 mm= − ° − ° = − =

∴  Length of the path of contact,

KL = KP + PL = 12.65 + 11.5 = 24.15  mm
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and length of the arc of contact

Length of path of contact 24.15
25.7 mm

cos cos 20
= = =

φ °
We know that angle turned through by pinion

Length of arc of contact × 360° 25.7 360
29.45

Circumference of pinion 2 50

× °= = = °
π ×

 Ans.

2.  Maximum velocity of sliding

Let ω
1
 = Angular speed of pinion, and

ω
2
 = Angular speed of wheel.

We know that pitch line speed,

v = ω
1
.r = ω

2
.R

∴ ω
1
 = v/r  =  120/5 = 24 rad/s

and ω
2 

= v/R = 120/10 = 12 rad/s

 ∴ Maximum velocity of sliding,

v
S
 = (ω

1
 + ω

2
) KP ...( )KP PL>�

= (24 + 12) 12.65 = 455.4 mm/s  Ans.

Example 12.5.  A pair of gears, having 40 and 20 teeth respectively, are rotating in mesh,

the speed of the smaller being 2000 r.p.m. Determine the velocity of sliding between the gear teeth

faces at the point of engagement, at the pitch point, and at the point of disengagement if the smaller

gear is the driver. Assume that the gear teeth are 20° involute form, addendum length is 5 mm and the

module is 5 mm.

Also find the angle through which the pinion turns while any pairs of teeth are in contact.

Solution.  Given : T  = 40 ; t  = 20 ; N
1
  = 2000 r.p.m. ; φ = 20° ; addendum = 5 mm ; m = 5 mm

We know that angular velocity of the smaller gear,

1
1

2 2 2000
209.5 rad/s

60 60

Nπ π ×ω = = =

and angular velocity of the larger gear,

2 1

20
209.5 104.75 rad/s

40

t

T
ω = ω × = × = 2

1

...
t

T

ω = ω 
�

Pitch circle radius of the smaller gear,

r = m.t / 2 = 5 × 20/2 = 50 mm

and pitch circle radius of the larger gear,

R = m.t / 2 = 5 × 40/2 = 100 mm

∴   Radius of addendum circle of smaller gear,

r
A

 = r + Addendum = 50 + 5 = 55 mm

and radius of addendum circle of larger gear,

R
A

 = R + Addendum = 100 + 5 = 105  mm

The engagement and disengagement of the gear teeth is shown in Fig. 12.11. The point K is

the point of engagement, P is the pitch point and L is the point of disengagement. MN is the common

tangent at the points of contact.
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We know that the distance of point of engagement K from the pitch point P or the length of

the path of approach,

2 2 2
A( ) cos sinKP R R R= − φ − φ

2 2 2
(105) (100) cos 20 100 sin 20= − ° − °

46.85 34.2 12.65 mm= − =
and the distance of the pitch point P from the point of disengagement L or the length of the path of

recess,

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2(55) (50) cos 20 50 sin 20 28.6 17.1 11.5 mm= − ° − ° = − =
Velocity of sliding at the point of engagement

We know that velocity of sliding at the point of engagement K,

SK 1 2( ) (209.5 104.75) 12.65 3975 mm/sv KP= ω + ω = + =  Ans.

Velocity of sliding at the pitch point

Since the velocity of sliding is proportional to the distance of the contact point from the pitch

point, therefore the velocity of sliding at the pitch point is zero. Ans.

Velocity of sliding at the point of disengagement

We know that velocity of sliding at the point of disengagement L,

SL 1 2( ) (209.5 104.75) 11.5 3614 mm/sv PL= ω + ω = + =  Ans.

Angle through which the pinion turns

We know that length of the path of contact,

            KL  = KP + PL = 12.65 + 11.5 = 24.15 mm

and length of arc of contact 
24.15

25.7 mm
cos cos 20

KL= = =
φ °

Circumference of the smaller gear or pinion

= 2 π r = 2π × 50 = 314.2 mm

∴   Angle through which the pinion turns

360
Length of arc of contact

Circumference of pinion

°= ×

360
25.7 29.45

314.2

°= × = °  Ans.

Example 12.6. The following data relate to a pair of 20° involute gears in mesh :

Module = 6 mm, Number of teeth on pinion = 17, Number of teeth on gear = 49 ; Addenda

on pinion and gear wheel = 1 module.

Find : 1. The number of pairs of teeth in contact ; 2. The angle turned through by the pinion

and the gear wheel when one pair of teeth is in contact, and 3. The ratio of sliding to rolling motion

when the tip of a tooth on the larger wheel (i) is just making contact, (ii) is just leaving contact with

its mating tooth, and (iii) is at the pitch point.
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Solution. Given : φ  = 20° ; m  = 6 mm ; t = 17 ; T = 49 ; Addenda on pinion and gear wheel

= 1 module = 6 mm

1. Number of pairs of teeth in contact

We know that pitch circle radius of pinion,

r = m.t / 2 = 6 × 17 / 2 = 51 mm

and pitch circle radius of gear,

r = m.T / 2 = 6 × 49 / 2 = 147 mm

∴  Radius of addendum circle of pinion,

r
A

 = r + Addendum = 51 + 6 = 57 mm

and radius of addendum circle of gear,

R
A

 = R + Addendum = 147 + 6 = 153 mm

We know that the length of path of approach (i.e. the path of contact when engagement

occurs),

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig. 12.11)

2 2 2(153) (147) cos 20 147 sin 20= − ° − °

65.8 50.3 15.5 mm= − =
and length of path of recess (i.e. the path of contact when disengagement occurs),

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2
(57) (51) cos 20 51 sin 20= − ° − °

30.85 17.44 13.41 mm= − =
∴   Length of path of contact,

15.5 13.41 28.91 mmKL KP PL= + = + =

Racks
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and length of arc of contact 
Length of path of contact 28.91

30.8 mm
cos cos 20

= = =
φ °

We know that circular pitch,

. 6 18.852 mmcp m= π = π × =
∴  Number of pairs of teeth in contact (or contact ratio)

Length of arc of contact 30.8
1.6 say 2

Circular pitch 18.852
= = =  Ans.

2.  Angle turned through by the pinion and gear wheel when one pair of teeth is in contact

We know that angle turned through by the pinion

Length of arc of contact 360° 30.8 360
34.6

Circumference of pinion 2 51

× ×= = = °
π ×

 Ans.

and angle turned through by the gear wheel

Length of arc of contact 360° 30.8 360
12

Circumference of gear 2 147

× ×= = = °
π ×

 Ans.

3.  Ratio of sliding to rolling motion

Let ω
1
 = Angular velocity of pinion, and

ω
2
 = Angular velocity of gear wheel.

We know that  1 2 2 1 1 1/ / or / 17 / 49 0.347T t t Tω ω = ω = ω × = ω × = ω

and rolling velocity, R 1 2 1 1. . 51 51 mm/sv r R= ω = ω = ω × = ω
(i) At the instant when the tip of a tooth on the larger wheel is just making contact with its

mating teeth (i.e. when the engagement commences), the sliding velocity

S 1 2 1 1 1( ) ( 0.347 ) 15.5 20.88 mm/sv KP= ω + ω = ω + ω = ω

∴  Ratio of sliding velocity to rolling velocity,

S 1

R 1

20.88
0.41

51

v

v

ω= =
ω

 Ans.

(ii)  At the instant when the tip of a tooth on the larger wheel is just leaving contact with its

mating teeth (i.e. when engagement terminates), the sliding velocity,

S 1 2 1 1 1( ) ( 0.347 ) 13.41 18.1 mm/sv PL= ω + ω = ω + ω = ω

∴  Ratio of sliding velocity to rolling velocity

S 1

R 1

18.1
0.355

51

v

v

ω= =
ω

 Ans.

(iii) Since at the pitch point, the sliding velocity is zero, therefore the ratio of sliding velocity

to rolling velocity is zero. Ans.

Example 12.7.  A pinion having 18 teeth engages with an internal gear having 72 teeth. If

the gears have involute profiled teeth with 20° pressure angle, module of 4 mm and the addenda on

pinion and gear are 8.5 mm and 3.5 mm respectively, find the length of path of contact.

Solution. Given : t = 18 ; T = 72 ; φ = 20° ; m = 4 mm ; Addendum on pinion = 8.5 mm ;

Addendum on gear = 3.5 mm
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Fig. 12.12 shows a pinion with centre O
1
, in mesh with internal gear of centre O

2
. It may be

noted that the internal gears have the addendum circle and the tooth faces inside the pitch circle.

We know that the length of path of contact is the length of the common tangent to the two

base circles cut by the addendum circles. From Fig. 12.12, we see that the addendum circles cut the

common tangents at points K and L. Therefore the length of path of contact is KL which is equal to the

sum of KP (i.e. path of approach) and PL (i.e. path of recess).

Fig. 12.12

We know that pitch circle radius of the pinion,

1 . / 2 4 18/ 2 36 mmr O P mt= = = × =
and pitch circle radius of the gear,

2 . / 2 4 72 / 2 144 mmR O P mT= = = × =
∴  Radius of addendum circle of the pinion,

  A 1 1r O L O P= = + Addendum on pinion = 36 + 8.5 = 44.5 mm

and radius of addendum circle of the gear,

A 2 2 Addendum on wheel = 144 – 3.5 = 140.5 mmR O K O P= = −
From Fig. 12.12, radius of the base circle of the pinion,

1 1 cos cos 36 cos 20 33.83 mmO M O P r= φ= φ= ° =
and radius of the base circle of the gear,

2 2 cos cos 144 cos 20 135.32 mmO N O P R= φ= φ= ° =
We know that length of the path of approach,

2 2
2 2 2sin 20 ( ) ( )KP PN KN O P O K O N= − = ° − −

= 144 × 0.342 – 2 2
(140.5) (135.32)−  = 49.25 – 37.8 = 11.45 mm
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and length of the path of recess,

                   2 2
1 1 1( ) ( ) sin 20PL ML MP O L O M O P= − = − − °

 2 2
(44.5) (33.83) 36 0.342 28.9 12.3 16.6 mm= − − × = − =

∴  Length of the path of contact,

                     11.45 16.6 28.05 mmKL KP PL= + = + =  Ans.

12.19. Interference in Involute Gears

Fig. 12.13 shows a pinion with centre O
1
, in mesh with wheel or gear with centre O

2
. MN is

the common tangent to the base circles and KL is the path of contact between the two mating teeth.

Fig. 12.13. Interference in involute gears.

A little consideration will show, that if the radius of the addendum circle of pinion is

increased to O1N, the point of contact L will move from L to N. When this radius is further increased,

the point of contact L will be on the inside of base circle of wheel and not on the involute profile of

tooth on wheel. The tip of tooth on the pinion will then undercut the tooth on the wheel at the root and

remove part of the involute profile of tooth on the wheel. This effect is known as interference, and

occurs when the teeth are being cut. In brief, the phenomenon when the tip of tooth undercuts the

root on its mating gear is known as interference.

Similarly, if the radius of the addendum circle of the wheel increases beyond O
2
M, then the

tip of tooth on wheel will cause interference with the tooth on pinion. The points M and N are called

interference points. Obviously, interference may be avoided if the path of contact does not extend

beyond interference points. The limiting value of the radius of the addendum circle of the pinion is

*O
1
N and of the wheel is O

2
M.

From the above discussion, we conclude that the interference may only be avoided, if the

point of contact between the two teeth is always on the involute profiles of both the teeth. In other

* From Fig. 12.13, we see that

2 2 2 2
1 1

( ) ( ) ( ) [ ) sin ]
bO N O M MN r r R= + = + + φ

where r
b
 = Radius of base circle of pinion = O

1
P cos φ = r cos φ

and 2 2 2 2
2 2

( ) ( ) ( ) [ ) sin ]
bO M O N MN R r R= + = + + φ

where R
b
 = Radius of base circle of wheel = O

2
P cos φ = R cos φ
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words, interference may only be prevented, if the addendum circles of the two mating gears cut the

common tangent to the base circles between the points of tangency.

When interference is just avoided, the maximum length of path of contact is MN when the

maximum addendum circles for pinion and wheel pass through the points of tangency N and M re-

spectively as shown in Fig. 12.13. In such a case,

Maximum length of path of approach,

        MP = r sin φ
and maximum length of path of recess,

       PN = R sin φ
∴   Maximum length of path of contact,

       MN = MP + PN = r sin φ + R sin φ = (r + R) sin φ
and maximum length of arc of contact

        
( ) sin

( ) tan
cos

r R
r R

+ φ= = + φ
φ

Note : In case the addenda on pinion and wheel is such that the path of approach and path of recess are half of

their maximum possible values, then

   Path of approach,         1

2
KP MP=

or         
2 2 2

A

sin
( ) cos sin

2

r
R R R

φ− φ − φ=

and path of recess,                         
1
2

PL PN=

or             
2 2 2

A

sin
( ) cos sin

2

R
r r r

φ− φ − φ=

∴  Length of the path of contact

           
1 1
2 2

( ) sin

2

r R
KP PL MP PN

+ φ= + = + =

Example 12.8.  Two mating gears have 20 and 40 involute teeth of module 10 mm and 20°

pressure angle. The addendum on each wheel is to be made of such a length that the line of contact

on each side of the pitch point has half the maximum possible length. Determine the addendum

height for each gear wheel, length of the path of contact, arc of contact and contact ratio.

Solution. Given : t  = 20 ; T  = 40 ; m  = 10 mm ; φ = 20°

Addendum height for each gear wheel

We know that the pitch circle radius of the smaller gear wheel,

r = m.t / 2 = 10 × 20 / 2 = 100 mm

and pitch circle radius of the larger gear wheel,

R = m.T / 2 = 10 × 40 / 2 = 200 mm

Let R
A

 = Radius of addendum circle for the larger gear wheel, and

r
A

 = Radius of addendum circle for the smaller gear wheel.

Since the addendum on each wheel is to be made of such a length that the line of contact on

each side of the pitch point (i.e. the path of approach and the path of recess) has half the maximum

possible length, therefore
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Path of approach,           1
2

KP MP= ...(Refer Fig. 12.13)

or     
2 2 2

A

.sin
( ) cos sin

2

r
R R R

φ
− φ − φ =

or        
2 2 2

A

100 sin 20
( ) (200) cos 20 200 sin 20 50 sin 20

2
R

× °
− ° − ° = = °

   2
A( ) 35 320 50 sin 20 200 sin 20 250 0.342 85.5R − = ° + ° = × =

    2 2
A( ) 35 320 (85.5) 7310R − = = ...(Squaring both sides)

   (R
A

)2 = 7310 + 35 320 = 42 630     or    R
A

 = 206.5 mm

∴  Addendum height for larger gear wheel

   A 206.5 200 6.5 mmR R= − = − =  Ans.

Now path of recess,    1
2

PL PN=

or
2 2 2

A

.sin
( ) cos sin

2

R
r r r

φ
− φ − φ =

or
2 2 2

A

200 sin 20
( ) (100) cos 20 100 sin 20 100 sin 20

2
r

°
− ° − ° = = °

    2 2 2
A( ) (100) cos 20 100 sin 20 100 sin 20 200 0.342 68.4r − ° = ° + ° = × =

   2 2
A( ) 8830 (68.4) 4680r − = = ...(Squaring both sides)

    2
A A( ) 4680 8830 13 510 or 116.2 mmr r= + = =

∴   Addendum height for smaller gear wheel

    A 116.2 100 6.2 mmr r= − = − = Ans.

Length of the path of contact

We know that length of the path of contact

   
1 1 ( )sin

2 2 2

r R
KP PL MP PN

+ φ
= + = + =

   
(100 200) sin 20

51.3 mm
2

+ °= =  Ans.

Length of the arc of contact

We know that length of the arc of contact

   
Length of the path of contact 51.3

54.6 mm
cos cos 20

= = =
φ °

Ans.

Contact ratio

We know that circular pitch,

                                       P
c
 = π m  =  π  × 10 = 31.42 mm

∴                   
Length of the path of contact 54.6

Contact ratio = 1.74 say 2
31.42cp

= = Ans.
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12.20. Minimum Number of Teeth on the Pinion in Order to Avoid
Interference

We have already discussed in the previous article that in order to avoid interference, the

addendum circles for the two mating gears must cut the common tangent to the base circles between

the points of tangency. The limiting condition reaches, when the addendum circles of pinion and

wheel pass through points N and M (see Fig. 12.13) respectively.

Let t = Number of teeth on the pinion,,

T = Number of teeth on the wheel,

m = Module of the teeth,

r = Pitch circle radius of pinion = m.t / 2

G = Gear ratio = T / t = R / r

φ = Pressure angle or angle of obliquity.

From triangle O
1
NP,

2 2 2
1 1 1 1

2 2 2

( ) ( ) ( ) 2 cos

sin 2 . sin cos (90 )

O N O P PN O P PN O PN

r R r R

= + − × ×

= + φ − φ ° + φ

2...( sin sin )PN O P R= φ = φ�

2 2 2 2

2 2 2
2 2 2

2

sin 2 . sin

sin 2 sin
1 1 2 sin

r R r R

R R R R
r r

r r rr

= + φ + φ

 φ φ   = + + = + + φ       
∴  Limiting radius of the pinion addendum circle,

2 2
1

.
1 2 sin 1 2 sin

2

R R m t T T
O N r

r r t t

   = + + φ = + + φ      

   Let A
P
.m = Addendum of the pinion, where  A

P
  is a fraction by which the standard

addendum  of  one  module  for the pinion should be multiplied in order

to avoid interference.

We know that the addendum of the pinion

= O
1
N – O

1
P

∴ 2
P

. .
. 1 2 sin

2 2

m t T T m t
A m

t t

 = + + φ−   1...( . / 2)O P r m t= =�

2.
1 sin 12

2

m t T T

t t

  = + φ −+    

or
2

P 1 sin 12
2

t T T
A

t t

  = + φ −+    

∴ P P

2
2

2 2

1 + ( + 2)sin 11 sin 12

A A
t

T T G G

t t

= =
  φ −+ φ −+  
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This equation gives the minimum number of teeth required on the pinion in order to avoid

interference.

Notes :  1. If the pinion and wheel have equal teeth, then G  = 1. Therefore the above equation reduces to

2

2

1 3 sin 1

pA
t =

+ φ−
2. The minimum number of teeth on the pinion which will mesh with any gear (also rack) without

interference are given in the following table :

Table 12.2. Minimum number of teeth on the pinion

S. No. System of gear teeth Minimum number of teeth on the pinion

1.
1
2

14 ° Composite 12

2.
1
2

14 ° Full depth involute 32

3. 20° Full depth involute 18

4. 20° Stub involute 14

12.21. Minimum Number of Teeth on the Wheel in Order to Avoid
Interference

Let T = Minimum number of teeth required on the wheel in order to avoid

interference,

and A
W

.m = Addendum of the wheel, where A
W

  is a fraction by which the standard

addendum for the wheel should be multiplied.

Using the same notations as in Art. 12.20, we have from triangle O
2
MP

2 2 2
2 2 2 2

2 2 2

( ) ( ) ( ) 2 cos

sin 2 . sin cos (90 )

O M O P PM O P PM O PM

R r R r

= + − × ×
= + φ − φ ° + φ

1...( sin )PM O P r= φ=�

= R2 + r2 sin2 φ + 2R.r sin2 φ
2 2

2 2 2

2

sin 2 sin
1 1 2 sin

r r r r
R R

R R RR

2 φ φ   = + + = + + φ       
∴  Limiting radius of wheel addendum circle,

2 2
2

.
1 sin 1 sin2 2

2

r mT tr t
O M R

R TR T

   = + φ = + φ+ +      
We know that the addendum of the wheel

= O
2
M – O

2
P

∴ 2
W

. .
1 sin2

2 2

mT t mTt
A m

T T

 = + φ −+  
2...( . / 2)O P R mT= =�

2.
1 sin 12

2

mT t t

T T

  = + φ −+    

or
2

W 1 sin 12
2

T t t
A

T T

  = + φ −+    



410  �   Theory of Machines

∴ W W

2 2

2 2

1 1
1 sin 1 1 sin 12 2

A A
T

t t

T GT G

= =
   + φ − + φ −+ +      

Notes : 1. From the above equation, we may also obtain the minimum number of teeth on pinion.

Multiplying both sides by ,
t

T

W

2

2

1 1
1 sin 12

t
A

t TT
T

G G

×
× =

 + φ−+  

W

2

2

1 1
1 sin 12

A
t

G
G G

=
  + φ −+    

2. If wheel and pinion have equal teeth, then G  = 1, and

W

2

2

1 3 sin 1

A
T =

+ φ −

Example 12.9. Determine the minimum number of teeth required on a pinion, in order to

avoid interference which is to gear with,

1. a wheel to give a gear ratio of 3 to 1 ; and 2. an equal wheel.

The pressure angle is 20° and a standard addendum of 1 module for the wheel may be

assumed.

Solution. Given : G = T / t = 3 ; φ = 20° ; A
W

  = 1 module

1. Minimum number of teeth for a gear ratio of 3 : 1

We know that minimum number of teeth required on a pinion,

W

2

2

1 1
1 sin 12

A
t

G
G G

×
=

  + φ −+    

2

2 1 2
15.04 or 16

0.1331 1
3 1 sin 20 12

3 3

×= = =
  + ° −+    

  Ans.

2. Minimum number of teeth for equal wheel

We know that minimum number of teeth for equal wheel,

                                  
W

2 2

2 2 1 2

0.1621 3 sin 1 1 3 sin 20 1

A
t

× ×= = =
+ φ − + ° −

                                    12.34 or 13=  Ans.

Example 12.10.  A pair of spur gears with involute teeth is to give a gear ratio of 4 : 1. The

arc of approach is not to be less than the circular pitch and smaller wheel is the driver. The angle of

pressure is 14.5°. Find : 1. the least number of teeth that can be used on each wheel, and 2. the

addendum of the wheel in terms of the circular pitch ?



Chapter 12 : Toothed Gearing   �  411

Solution. Given : G  = T/t = R/r  =  4 ; φ = 14.5°

1. Least number of teeth on each wheel

Let t = Least number of teeth on the smaller wheel i.e. pinion,

T = Least number of teeth on the larger wheel i.e. gear, and

r = Pitch circle radius of the smaller wheel i.e. pinion.

We know that the maximum length of the arc of approach

Maximum length of the path of approach sin
tan

cos cos

r
r

φ= = = φ
φ φ

and circular pitch,
2

c

r
p m

t

π= π =
2

...
r

m
t

 =  
�

Since the arc of approach is not to be less than the circular pitch, therefore

2 2 2
tan or 24.3 say 25

tan tan 14.5

r
r t

t

π π πφ = = = =
φ °

Ans.

and . 4 25 100T G t= = × = Ans. ...( / )G T t=�

2. Addendum of the wheel

We know that addendum of the wheel

2.
1 sin 12

2

mT t t

T T

  = + φ −+    

2100 25 25
1 sin 14.5 12

2 100 100

m  ×  = + ° −+    

50 0.017 0.85 0.85 / 0.27c cm m p p= × = = × π= Ans.

...( / )cm p= π�

Example 12.11.  A pair of involute spur gears with 16° pressure angle and pitch of module

6 mm is in mesh. The number of teeth on pinion is 16 and its rotational speed is 240 r.p.m. When the

gear ratio is 1.75, find in order that the interference is just avoided ; 1. the addenda on pinion and

gear wheel ; 2. the length of path of contact ; and 3. the maximum velocity of sliding of teeth on either

side of the pitch point.

Solution. Given : φ = 16° ; m = 6 mm ; t = 16 ; N
1
 = 240 r.p.m. or ω

1
 = 2π × 240/60

= 25.136 rad/s ; G = T / t = 1.75 or T = G.t = 1.75 × 16 = 28

1. Addenda on pinion and gear wheel

We know that addendum on pinion

       

2

2

.
1 sin 12

2

6 16 28 28
1 sin 16 12

2 16 16

m t T T

t t

  = + φ −+    
 ×  = + ° −+    

                     48 (1.224 1) 10.76 mm= − =  Ans.

2.
and addendum on wheel 1 sin 12

2

mT t t

T T

  = + φ −+    
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26 28 16 16

1 sin 16 12
2 28 28

 ×  = + ° −+    

       84 (1.054 1) 4.56 mm= − =  Ans.

2. Length of path of contact

We know that the pitch circle radius of wheel,

. / 2 6 28 / 2 84 mmR m T= = × =
and pitch circle radius of pinion,

. / 2 6 16 / 2 48 mmr m t= = × =
∴   Addendum circle radius of wheel,

A Addendum of wheel 84 10.76 94.76 mmR R= + = + =
and addendum circle radius of pinion,

r
A

 = r + Addendum of pinion = 48 + 4.56 = 52.56 mm

We know that the length of path of approach,

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig. 12.11)

2 2 2(94.76) (84) cos 16 84 sin16= − ° − °

49.6 23.15 26.45 mm= − =
and the length of the path of recess,

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2
(52.56) (48) cos 16 48 sin16= − ° − °

25.17 13.23 11.94 mm= − =
∴  Length of the path of contact,

26.45 11.94 38.39 mmKL KP PL= + = + = Ans.

3. Maximum velocity of sliding of teeth on either side of pitch point

Let ω
2
 = Angular speed of gear wheel.

We know that           1

2

1.75
T

t

ω = =
ω

 or 1
2

25.136
14.28 rad/s

1.75 1.75

ω
ω = = =

∴  Maximum velocity of sliding of teeth on the left side of pitch point i.e. at point K

1 2( ) (25.136 14.28) 26.45 1043 mm/sKP= ω + ω = + = Ans.

and maximum velocity of sliding of teeth on the right side of pitch point i.e. at point L

1 2( ) (25.136 14.28) 11.94 471 mm/sPL= ω + ω = + = Ans.

Example 12.12.  A pair of 20° full depth involute spur gears having 30 and 50 teeth respec-

tively of module 4 mm are in mesh. The smaller gear rotates at 1000 r.p.m. Determine : 1. sliding

velocities at engagement and at disengagement of pair of a teeth, and 2. contact ratio.

Solution. Given: φ = 20° ; t = 30 ; T = 50 ; m = 4 ; N
1
 = 1000 r.p.m. or ω

1
 = 2π × 1000/60

= 104.7 rad/s
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1. Sliding velocities at engagement and at disengagement of pair of a teeth

First of all, let us find the radius of addendum circles of the smaller gear and the larger gear.

We know that

Addendum of the smaller gear,

2.
1 sin 12

2

m t T T

t t

  = + φ −+    

24 30 50 50
1 sin 20 12

2 30 30

 ×  = + ° −+    

60(1.31 1) 18.6 mm= − =

and addendum of the larger gear,

2

2

.
1 sin 12

2

4 50 30 30
1 sin 20 12

2 50 50

100(1.09 1) 9 mm

mT t t

T T

  = + φ −+    
 ×  = + ° −+    

= − =

Pitch circle radius of the smaller gear,

. / 2 4 30 / 2 60 mmr m t= = × =

∴  Radius of addendum circle of the smaller gear,

r
A

 = r + Addendum of the smaller gear = 60 + 18.6 = 78.6 mm

Pitch circle radius of the larger gear,

R = m.T / 2 = 4 × 50 / 2 = 100 mm

∴   Radius of addendum circle of the larger gear,

R
A

 = R + Addendum of the larger gear = 100 + 9 = 109 mm

We know that the path of approach (i.e. path of contact when engagement occurs),

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig. 12.11)

2 2 2
(109) (100) cos 20 100 sin 20 55.2 34.2 21 mm= − ° − ° = − =

and the path of recess (i.e. path of contact when disengagement occurs),

2 2 2
A( ) cos sinPL r r r= − φ − φ

2 2 2
(78.6) (60) cos 20= − ° – 60 sin 20° = 54.76 – 20.52 = 34.24 mm

Let ω2 = Angular speed of the larger gear in rad/s.

We know that 1 1
2

2

10.47 30
or 62.82 rad/s

50

tT

t T

ω ω × ×= ω = = =
ω

∴  Sliding velocity at engagement of a pair of teeth

1 2( ) (104.7 62.82)21 3518 mm/sKP= ω + ω = + =

= 3.518 m/s Ans.
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and sliding velocity at disengagement of a pair of teeth

1 2( ) (104.7 62.82)34.24 5736 mm/sPL= ω + ω = + =

= 5.736m/s Ans.

2. Contact ratio

We know that the length of the arc of contact

Length of thepath of contact 21 34.24

cos cos cos 20

58.78 mm

KP PL+ += = =
φ φ °

=

and Circular pitch = π × m = 3.142 × 4 = 12.568 mm

∴ Length of arc of contact 58.78
Contact ratio = 4.67 say5

Circular pitch 12.568
= = Ans.

Example 12.13.  Two gear wheels mesh externally and are to give a velocity ratio of 3 to 1.

The teeth are of involute form ; module = 6 mm, addendum = one module, pressure angle = 20°. The

pinion rotates at 90 r.p.m. Determine : 1. The number of teeth on the pinion to avoid interference on

it and the corresponding number of teeth on the wheel, 2. The length of path and arc of contact,

3.The number of pairs of teeth in contact, and 4. The maximum velocity of sliding.

Solution. Given : G = T / t = 3 ; m   = 6 mm ; A P = A W = 1 module = 6 mm ;  φ = 20° ;

N1 = 90 r.p.m.  or  ω1 = 2π × 90 / 60 = 9.43 rad/s

1. Number of teeth on the pinion to avoid interference on it and the corresponding number of teeth

    on the wheel

We know that number of teeth on the pinion to avoid interference,

P

2 2

2 2 6

1 ( 2) sin 1 1 3 (3 2) sin 20 1

A
t

G G

×= =
+ + φ − + + ° −

= 18.2 say 19 Ans.

and corresponding number of teeth on the wheel,

              T = G.t = 3 × 19 = 57 Ans.

2. Length of path and arc of contact

We know that pitch circle radius of pinion,

r  =  m.t / 2  =  6  × 19/2 = 57 mm

∴  Radius of addendum circle of pinion,

r
A

 = r + Addendum on pinion (A
P
) = 57 + 6 = 63 mm

and pitch circle radius of wheel,

R = m.T / 2 = 6 × 57 / 2 = 171 mm

∴   Radius of addendum circle of wheel,

A WAddendum on wheel ( ) 171 6 177 mmR R A= + = + =
We know that the path of approach (i.e. path of contact when engagement occurs),

2 2 2
A( ) cos sinKP R R R= − φ − φ ...(Refer Fig. 12.11)

2 2 2(177) (171) cos 20= − ° – 171 sin 20° = 74.2 – 58.5 = 15.7 mm
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and the path of recess (i.e. path of contact when disengagement occurs),

2 2 2
A

2 2 2

( ) cos sin

(63) (57) cos 20 57sin 20 33.17 19.5 13.67 mm

PL r r r= − φ − φ

= − ° − ° = − =

∴  Length of path of contact,

15.7 13.67 29.37 mmKL KP PL= + = + = Ans.

We know that length of arc of contact

Length of path of contact 29.37
31.25 mm

cos cos 20
= = =

φ °
Ans.

3. Number of pairs of teeth in contact

We know that circular pitch,

6 18.852 mmcp m= π × = π × =
∴  Number of pairs of teeth in contact

Length of arc of contact 31.25
1.66 say 2

18.852cp
= = = Ans.

4. Maximum velocity of sliding

2

1
2 1

2

Let Angular speed of wheel in rad/s.

19
We know that or 9.43 3.14 rad/s

57

T t

t T

ω =
ω

= ω = ω × = × =
ω

∴  Maximum velocity of sliding,

S 1 2( )v KP= ω + ω ...( )KP PL>�

(9.43 3.14) 15.7 197.35 mm/s= + = Ans.

12.22. Minimum Number of Teeth on a Pinion for Involute Rack in Order to
Avoid Interference

A rack and pinion in mesh is shown in Fig. 12.14.

Fig. 12.14. Rack and pinion in mesh.

Let t = Minimum number of teeth on the pinion,
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4. Prove that the velocity of sliding is proportional to the distance of the point of contact from the pitch

point.

5. Prove that for two involute gear wheels in mesh, the angular velocity ratio does not change if the

centre distance is increased within limits, but the pressure angle increases.

6. Derive an expression for the length of the arc of contact in a pair of meshed spur gears.

7. What do you understand by the term ‘interference’ as applied to gears?

8. Derive an expression for the minimum number of teeth required on the pinion in order to avoid

interference in involute gear teeth when it meshes with wheel.

9. Derive an expression for minimum number of teeth required on a pinion to avoid interference when it

gears with a rack.

10. Define (i) normal pitch, and (ii) axial pitch relating to helical gears.

11. Derive an expression for the centre distance of a pair of spiral gears.

12. Show that, in a pair of spiral gears connecting inclined shafts, the efficiency is maximum when the

spiral angle of the driving wheel is half the sum of the shaft and friction angles.

OBJECTIVE TYPE QUESTIONS

1. The two parallel and coplanar shafts are connected by gears having teeth parallel to the axis of the

shaft. This arrangement is called

(a) spur gearing (b) helical gearing (c) bevel gearing (d) spiral gearing

2. The type of gears used to connect two non-parallel non-intersecting shafts are

(a) spur gears (b) helical gears (c) spiral gears (d) none of these

3. An imaginary circle which by pure rolling action, gives the same motion as the actual gear, is called

(a) addendum circle (b) dedendum circle (c) pitch circle (d) clearance circle

4. The size of a gear is usually specified by

(a) pressure angle (b) circular pitch (c) diametral pitch (d) pitch circle diameter

5. The radial distance of a tooth from the pitch circle to the bottom of the tooth, is called

(a) dedendum (b) addendum (c) clearance (d) working depth

6. The product of the diametral pitch and circular pitch is equal to

(a) 1 (b) 1/π (c) π (d) 2π
7. The module is the reciprocal of

(a) diametral pitch (b) circular pitch (c) pitch diameter (d) none of these

8. Which is the incorrect relationship of gears?

(a) Circular pitch × Diametral pitch = π (b) Module = P.C.D/No.of teeth

(c) Dedendum = 1.157 module (d) Addendum = 2.157 module

9. If the module of a gear be m, the number of teeth T and pitch circle diameter D, then

(a) m  = D/T (b) D = T/m (c) m  = D/2T (d) none of these

10. Mitre gears are used for

(a) great speed reduction (b) equal speed

(c) minimum axial thrust (d) minimum backlash

11. The condition of correct gearing is

(a) pitch line velocities of teeth be same

(b) radius of curvature of two profiles be same

(c) common normal to the pitch surface cuts the line of centres at a fixed point

(d) none of the above

12. Law of gearing is satisfied if

(a) two surfaces slide smoothly

(b) common normal at the point of contact passes through the pitch point on the line joining the

centres of rotation

(c) number of teeth = P.C.D. / module

(d) addendum is greater than dedendum



Chapter 12 : Toothed Gearing   �  427

13. Involute profile is preferred to cyloidal because

(a) the profile is easy to cut

(b) only one curve is required to cut

(c) the rack has straight line profile and hence can be cut accurately

(d) none of the above

14. The contact ratio for gears is

(a) zero (b) less than one (c) greater than one

15. The maximum length of arc of contact for two mating gears, in order to avoid interference, is

(a) (r + R) sin φ (b) (r + R) cos φ (c) (r + R) tan  φ (d) none of these

where    r = Pitch circle radius of pinion,

    R = Pitch circle radius of driver, and

φ = Pressure angle.

16. When the addenda on pinion and wheel is such that the path of approach and path of recess are half of

their maximum possible values, then the length of the path of contact is given by

(a)
( ) sin

2

r R+ φ
(b)

( ) cos

2

r R+ φ
(c)

( ) tan

2

r R+ φ
(d) none of these

17. Interference can be avoided in involute gears with 20° pressure angle by

(a) cutting involute correctly

(b) using as small number of teeth as possible

(c) using more than 20 teeth

(d) using more than 8 teeth

18. The ratio of face width to transverse pitch of a helical gear with α as the helix angle is normally

(a) more than 1.15/tan α (b) more than 1.05/tan α
(c) more than 1/tan α (d) none of these

19. The maximum efficiency for spiral gears is

(a)
sin ( ) 1

cos ( ) 1

θ + φ +
θ − φ + (b)

cos ( ) 1

sin ( ) 1

θ − φ +
θ + φ +

 (c)
cos ( ) 1

cos ( ) 1

θ + φ +
θ − φ + (d)

cos ( ) 1

cos ( ) 1

θ − φ +
θ + φ +

where       θ = Shaft angle, and φ = Friction angle.

20. For a speed ratio of 100, smallest gear box is obtained by using

(a) a pair of spur gears

(b) a pair of helical and a pair of spur gear compounded

(c) a pair of bevel and a pair of spur gear compounded

(d) a pair of helical and a pair of worm gear compounded

ANSWERS

1. (a)  2. (c) 3. (c) 4. (d) 5. (a)

6. (c) 7. (a) 8. (d) 9. (a) 10. (b)

11. (c) 12. (b) 13. (b) 14. (c) 15. (c)

16. (a) 17. (c) 18. (a) 19. (c) 20. (d)

GO To FIRST
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1. Introduction.

2. Types of Gear Trains.

3. Simple Gear Train.

4. Compound Gear Train.

5. Design of Spur Gears.

6. Reverted Gear Train.

7. Epicyclic Gear Train.

8. Velocity Ratio of Epicyclic

Gear Train.

9. Compound Epicyclic Gear

Train (Sun and Planet

Wheel).

10. Epicyclic Gear Train With

Bevel Gears.

11. Torques in Epicyclic Gear

Trains.

13.1.13.1.13.1.13.1.13.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

Sometimes, two or more gears are made to mesh with

each other to transmit power from one shaft to another. Such

a combination is called gear train or train of toothed wheels.

The nature of the train used depends upon the velocity ratio

required and the relative position of the axes of shafts. A

gear train may consist of spur, bevel or spiral gears.

13.2.13.2.13.2.13.2.13.2. TTTTTypes of Gear ypes of Gear ypes of Gear ypes of Gear ypes of Gear TTTTTrainsrainsrainsrainsrains

Following are the different types of gear trains, de-

pending upon the arrangement of wheels :

1. Simple gear train, 2. Compound gear train, 3. Re-

verted gear train, and 4. Epicyclic gear train.

In the first three types of gear trains, the axes of the

shafts over which the gears are mounted are fixed relative to

each other. But in case of epicyclic gear trains, the axes of

the shafts on which the gears are mounted may move relative

to a fixed axis.

13.3.13.3.13.3.13.3.13.3. Simple Gear Simple Gear Simple Gear Simple Gear Simple Gear TTTTTrainrainrainrainrain

When there is only one gear on each shaft, as shown

in Fig. 13.1, it is known as simple gear train. The gears are

represented by their pitch circles.

When the distance between the two shafts is small,

the two gears 1 and 2 are made to mesh with each other to

428
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transmit motion from one shaft to the other, as shown in Fig. 13.1 (a). Since the gear 1 drives the gear

2, therefore gear 1 is called the driver and the gear 2 is called the driven or follower. It may be noted

that the motion of the driven gear is opposite to the motion of driving gear.

 

(a) (b) (c)

  Fig. 13.1. Simple gear train.

Let N
1 

= Speed of gear 1(or driver) in r.p.m.,

N
2 

= Speed of gear 2 (or driven or follower) in r.p.m.,

T
1 
= Number of teeth on gear 1, and

T
2 

= Number of teeth on gear 2.

Since the speed ratio (or velocity ratio) of gear train is the ratio of the speed of the driver to

the speed of the driven or follower and ratio of speeds of any pair of gears in mesh is the inverse of

their number of teeth, therefore

                                   Speed ratio 
1 2

2 1

N T

N T
= =

It may be noted that ratio of the speed of the driven or follower to the speed of the driver is

known as train value of the gear train. Mathematically,

                                   Train value 2 1

1 2

N T

N T
= =

From above, we see that the train value is the reciprocal of speed ratio.

Sometimes, the distance between the two gears is large. The motion from one gear to another,

in such a case, may be transmitted by either of the following two methods :

1. By providing the large sized gear, or 2. By providing one or more intermediate gears.

A little consideration will show that the former method (i.e. providing large sized gears) is

very inconvenient and uneconomical method ; whereas the latter method (i.e. providing one or more

intermediate gear) is very convenient and economical.

It may be noted that when the number of intermediate gears are odd, the motion of both the

gears (i.e. driver and driven or follower) is like as shown in Fig. 13.1 (b).

But if the number of intermediate gears are even, the motion of the driven or follower will be

in the opposite direction of the driver as shown in Fig. 13.1 (c).

Now consider a simple train of gears with one intermediate gear as shown in Fig. 13.1 (b).

Let N
1 

= Speed of driver in r.p.m.,

N
2 

= Speed of intermediate gear in r.p.m.,
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N
3 

= Speed of driven or follower in r.p.m.,

T
1 

= Number of teeth on driver,

T2 = Number of teeth on intermediate gear, and

T
3 

= Number of teeth on driven or follower.

Since the driving gear 1 is in mesh with the intermediate gear 2, therefore speed ratio for

these two gears is

1 2

2 1

=N T

N T
...(i)

Similarly, as the intermediate gear 2 is in mesh with the driven gear 3, therefore speed ratio

for these two gears is

32

3 2

=
TN

N T
...(ii)

The speed ratio of the gear train as shown in Fig. 13.1 (b) is obtained by multiplying the

equations (i) and (ii).

∴ 31 2 2

2 3 1 2

× = ×
TN N T

N N T T
or 31

3 1

=
TN

N T

i.e.
Speed of driver No. of teeth on driven

Speed ratio = =
Speed of driven No. of teeth on driver

and
Speed of driven No. of teeth on driver

Train value = =
Speed of driver No. of teeth on driven

Similarly, it can be proved that the

above equation holds good even if there are

any number of intermediate gears. From

above, we see that the speed ratio and the

train value, in a simple train of gears, is in-

dependent of the size and number of inter-

mediate gears. These intermediate gears are

called idle gears, as they do not effect the

speed ratio or train value of the system. The

idle gears are used for the following two pur-

poses :

1. To connect gears where a large

centre distance is required, and

2. To obtain the desired direction of

motion of the driven gear (i.e. clockwise or

anticlockwise).

13.4. Compound Gear Train

When there are more than one gear on a shaft, as shown in Fig. 13.2, it is called a compound

train of gear.

We have seen in Art. 13.3 that the idle gears, in a simple train of gears do not effect the speed

ratio of the system. But these gears are useful in bridging over the space between the driver and the

driven.

Gear trains inside a mechanical watch
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But whenever the distance between the driver and the driven or follower has to be bridged

over by intermediate gears and at the same time a great ( or much less ) speed ratio is required, then

the advantage of intermediate gears is intensified by providing compound gears on intermediate shafts.

In this case, each intermediate shaft has two gears rigidly fixed to it so that they may have the same

speed. One of these two gears meshes with the driver and the other with the driven or follower

attached to the next shaft as shown in Fig.13.2.

Fig. 13.2. Compound gear train.

In a compound train of gears, as shown in Fig. 13.2, the gear 1 is the driving gear mounted on

shaft A , gears 2 and 3 are compound gears which are mounted on shaft B. The gears 4 and 5 are also

compound gears which are mounted on shaft C and the gear 6 is the driven gear mounted on shaft D.

Let N
1 

= Speed of driving gear 1,

T
1 

= Number of teeth on driving gear 1,

N
2 

,N
3 

..., N
6 

= Speed of respective gears in r.p.m., and

T
2 

,T
3
..., T

6 
= Number of teeth on respective gears.

Since gear 1 is in mesh with gear 2, therefore its speed ratio is

1 2

2 1

N T

N T
= ...(i)

Similarly, for gears 3 and 4, speed ratio is

3 4

4 3

N T

N T
= ...(ii)

and for gears 5 and 6, speed ratio is

5 6

6 5

N T

N T
= ...(iii)

The speed ratio of compound gear train is obtained by multiplying the equations (i), (ii) and (iii),

∴ 3 5 61 2 4

2 4 6 1 3 5

N N TN T T

N N N T T T
× × = × × or

*
2 4 61

6 1 3 5

T T TN

N T T T

× ×
=

× ×

* Since gears 2 and 3 are mounted on one shaft B, therefore N
2
 = N

3
. Similarly gears 4 and 5 are mounted on

shaft C, therefore N
4
 = N

5
.
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i.e.
Speed of the first driver

Speed ratio = 
Speed of the last driven or follower

Product of the number of teeth on the drivens
= 

Product of the number of teeth on the drivers 

and
Speed of the last driven or follower

Train value = 
Speed of the first driver 

Product of the number of teeth on the drivers
= 

Product of the number of teeth on the drivens 

The advantage of a compound train over a simple gear train is that a much larger speed

reduction from the first shaft to the last shaft can be obtained with small gears. If a simple gear train

is used to give a large speed reduction, the last gear has to be very large. Usually for a speed reduction

in excess of 7 to 1, a simple train is not used and a compound train or worm gearing is employed.

Note: The gears which mesh must have the same circular pitch or module. Thus gears 1 and 2 must have the

same module as they mesh together. Similarly gears 3 and 4, and gears

5 and 6 must have the same module.

Example 13.1. The gearing of a machine tool is shown

in Fig. 13.3. The motor shaft is connected to gear A and rotates

at 975 r.p.m. The gear wheels B, C, D and E are fixed to parallel

shafts rotating together. The final gear F is fixed on the output

shaft. What is the speed of gear F ? The number of teeth on

each gear are as given below :

Gear A B C D E F

No. of teeth 20 50 25 75 26 65

Solution. Given : N
A 

= 975 r.p.m. ;

T
A 

= 20 ; T
B 

= 50 ; T
C 

= 25 ; T
D 

= 75 ; T
E 

= 26 ;

T
F 

= 65

From Fig. 13.3, we see that gears A , C

and E are drivers while the gears B, D and F are

driven or followers. Let the gear A  rotates in

clockwise direction. Since the gears B and C are

mounted on the same shaft, therefore it is a

compound gear and the direction or rotation of

both these gears is same (i.e. anticlockwise).

Similarly, the gears D and E are mounted on the

same shaft, therefore it is also a compound gear

and the direction of rotation of both these gears

is same (i.e. clockwise). The gear F will rotate in

anticlockwise direction.

Let N
F 

 = Speed of gear F, i.e. last driven or follower.

We know that

Speed of the first driver Product of no. of teeth on drivens
=

Speed of the last driven Product of no. of teeth on drivers

Fig. 13.3

Battery Car: Even though it is run by batteries,

the power transmission, gears, clutches,

brakes, etc. remain mechanical in nature.

Note : This picture is given as additional information

and is not a direct example of the current chapter.
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or
A B D F

F A C E

50 75 65
18.75

20 25 26

N T T T

N T T T

× × × ×= = =
× × × ×

∴ A
F

975
52 r. p. m.

18.75 18.75

N
N = = =  Ans.

13.5. Design of Spur Gears

Sometimes, the spur gears (i.e. driver and driven) are to be designed for the given velocity

ratio and distance between the centres of their shafts.

Let x = Distance between the centres of two shafts,

N
1 

= Speed of the driver,

T
1 

= Number of teeth on the driver,

d
1 

= Pitch circle diameter of the driver,

N2 , T2 and d2 = Corresponding values for the driven or follower, and

p
c 
= Circular pitch.

We know that the distance between the centres of two shafts,

1 2

2

d d
x

+
= ...(i)

and speed ratio or velocity ratio,

1 2 2

2 1 1

N d T

N d T
= = ...(ii)

From the above equations, we can conveniently find out the values of d
1 
and d

2 
(or T

1 
and T

2
)

and the circular pitch ( p
c 

). The values of T
1 

and T
2
, as obtained above, may or may not be whole

numbers. But in a gear since the number of its teeth is always a whole number, therefore a slight

alterations must be made in the values of x, d
1 
and d

2
, so that the number of teeth in the two gears may

be a complete number.

Example 13.2. Two parallel shafts, about 600 mm apart are to be connected by spur gears.

One shaft is to run at 360 r.p.m. and the other at 120 r.p.m. Design the gears, if the circular pitch is

to be 25 mm.

Solution. Given : x = 600 mm ; N
1 

= 360 r.p.m. ; N
2 

= 120 r.p.m. ; p
c 
= 25 mm

Let d
1 

= Pitch circle diameter of the first gear, and

d
2 

= Pitch circle diameter of the second gear.

We know that speed ratio,

1 2

2 1

360
3

120

N d

N d
= = = or d

2
 = 3d

1
...(i)

and centre distance between the shafts (x),

1 2

1
600 ( )

2
d d= + or d

1
 + d

2
 = 1200 ...(ii)

From equations (i) and (ii), we find that

d
1 

= 300 mm, and d
2 

= 900 mm

∴  Number of teeth on the first gear,

2
1

300
37.7

25c

d
T

p

π π×= = =
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and number of teeth on the second gear,

2
2

c

900
113.1

25

d
T

p

π π×= = =

Since the number of teeth on both the gears are to be in complete numbers, therefore let us

make the number of teeth on the first gear as 38. Therefore for a speed ratio of 3, the number of teeth

on the second gear should be 38 × 3 = 114.

Now the exact pitch circle diameter of the first gear,

1
1

38 25
302.36 mmcT p

d
× ×′ = = =
π π

and the exact pitch circle diameter of the second gear,

2
2

114 25
907.1 mmcT p

d
× ×′ = = =
π π

∴  Exact distance between the two shafts,

1 2 302.36 907.1
604.73 mm

2 2

d d
x

′ ′+ +′ = = =

Hence the number of teeth on the first and second gear must be 38 and 114 and their pitch

circle diameters must be 302.36 mm and 907.1 mm

respectively. The exact distance between the two shafts

must be 604.73 mm. Ans.

13.6. Reverted Gear Train

When the axes of the first gear (i.e. first driver)

and the last gear (i.e. last driven or follower) are co-axial,

then the gear train is known as reverted gear train as

shown in Fig. 13.4.

We see that gear 1 (i.e. first driver) drives the

gear 2 (i.e. first driven or follower) in the opposite direc-

tion. Since the gears 2 and 3 are mounted on the same

shaft, therefore they form a compound gear and the gear

3 will rotate in the same direction as that of gear 2. The

gear 3 (which is now the second driver) drives the gear 4

(i.e. the last driven or follower) in the same direction as

that of gear 1. Thus we see that in a reverted gear train,

the motion of the first gear and the last gear is like.

Let  T
1 
= Number of teeth on gear 1,

 r
1
 = Pitch circle radius of gear 1, and

N
1
 = Speed of gear 1 in r.p.m.

Similarly,

     T
2
, T

3
, T

4
 = Number of teeth on respective gears,

      r
2
, r

3
, r

4
 = Pitch circle radii of  respective gears, and

   N
2
, N

3
, N

4
 = Speed of respective gears in r.p.m.

Fig. 13.4.  Reverted gear train.
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Since the distance between the centres of the shafts of gears 1 and 2 as well as gears 3 and 4

is same, therefore

r
1 

+ r
2 

= r
3 

+ r
4

...(i)

Also, the circular pitch or module of all the gears is assumed to be same, therefore number of

teeth on each gear is directly proportional to its circumference or radius.

∴ *T
1 
+ T

2 
= T

3 
+ T

4
...(ii)

and
Product of number of teeth on drivens

Speed ratio =
Product of number of teeth on drivers

or 1 2 4

4 1 3

×=
×

N T T

N T T
... (iii)

From equations (i), (ii) and (iii), we can determine the number of teeth on each gear for the

given centre distance, speed ratio and module only when

the number of teeth on one gear is chosen arbitrarily.

The reverted gear trains are used in automotive trans-

missions, lathe back gears, industrial speed reducers, and in

clocks (where the minute and hour hand shafts are co-axial).

Example 13.3. The speed ratio of the reverted gear

train, as shown in Fig. 13.5, is to be 12. The module pitch of

gears A and B is 3.125 mm and of gears C and D is 2.5 mm.

Calculate the suitable numbers of teeth for the gears. No

gear is to have less than 24 teeth.

Solution. Given : Speed ratio, N
A

/N
D 

= 12 ;

m
A 

=
 
m

B 
= 3.125 mm ; m

C 
=

 
m

D
 = 2.5 mm

Let N
A

 = Speed of gear A ,

T
A

 = Number of teeth on gear A ,

r
A

 = Pitch circle radius of gear A ,

N
B
, N

C 
, N

D
 = Speed of respective gears,

T
B
, T

C 
, T

D
 = Number of teeth on respective gears, and

r
B
, r

C 
, r

D
 = Pitch circle radii of respective gears.

Fig. 13.5

* We know that circular pitch,

                            
2

c

r
p m

T

π= = π         or      
.

2

mT
r = , where m is the module.

∴                          
1

1

.

2

m T
r =  ; 

2
2

.

2

m T
r =  ; 

3
3

.

2

mT
r =  ; 

4
4

.

2

m T
r =

Now from equation (i),

                    
31 2 4.. . .

2 2 2 2

m Tm T m T m T+ = +

                            T
1
 + T

2
 = T

3
 + T

4
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Since the speed ratio between the gears A  and B and between the gears C and D are to be

same, therefore

* CA

B D

12 3.464
NN

N N
= = =

Also the speed ratio of any pair of gears in mesh is the inverse of their number of teeth,

therefore

B D

A C

3.464
T T

T T
= = ...(i)

We know that the distance between the shafts

x = r
A 

+ r
B 

= r
C 

+ r
D 

= 200 mm

or C CA A B B D D.. . .
200

2 2 2 2

m Tm T m T m T
+ = + =

.
...

2

m T
r

 =  
�

3.125 (T
A

 + T
B
) = 2.5 (T

C
 + T

D
) = 400 ...(∵ m

A
 = m

B
, and m

C
 = m

D
)

∴ T
A 

+
 
T

B
 = 400 / 3.125 = 128 ...(ii)

and T
C 

 + T
D 

= 400 / 2.5 = 160 ...(iii)

From equation (i), T
B 

= 3.464 T
A

. Substituting this value of T
B 

in equation (ii),

T
A 

+ 3.464 T
A 

= 128 or T
A 

= 128 / 4.464 = 28.67 say 28  Ans.

and T
B 

= 128 – 28 = 100 Ans.

Again from equation (i), T
D 

= 3.464 T
C
. Substituting this value of T

D 
in equation (iii),

T
C 

+ 3.464 T
C 

= 160 or T
C 

= 160 / 4.464 = 35.84 say 36  Ans.

and T
D 

= 160 – 36 = 124 Ans.

Note : The speed ratio of the reverted gear train with the calculated values of number of teeth on each gear is

A B D

D A C

100 124
12.3

28 36

N T T

N T T

× ×= = =
× ×

13.7. Epicyclic Gear Train

We have already discussed that in an epicyclic gear train, the axes of the shafts, over which

the gears are mounted, may move relative to a fixed axis. A simple epicyclic gear train is shown in

Fig. 13.6, where a gear A  and the arm C have a common axis at O
1 

about which they can rotate. The

gear B meshes with gear A  and has its axis on the arm at O
2
, about which the gear B can rotate. If the

*  We know that speed ratio A

D
v

Speed of first driver
12

Speed of last dri en

N

N
= = =

Also CA A

D B D

NN N

N N N
= × ...(N

B
 = N

C
, being on the same shaft)

For 
A

B

N

N  and 
C

D

N

N  to be same, each speed ratio should be 12  so that

CA A

D B D

12 12 12
NN N

N N N
= × = × =
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arm is fixed, the gear train is simple and gear A  can drive gear B

or vice- versa, but if gear A  is fixed and the arm is rotated about

the axis of gear A  (i.e. O
1
), then the gear B is forced to rotate

upon and around gear A . Such a motion is called epicyclic and

the gear trains arranged in such a manner that one or more of

their members move upon and around another member are

known as epicyclic gear trains (epi. means upon and cyclic

means around). The epicyclic gear trains may be simple or com-

pound.

The epicyclic gear trains are useful for transmitting

high velocity ratios with gears of moderate size in a compara-

tively lesser space. The epicyclic gear trains are used in the

back gear of lathe, differential gears of the automobiles, hoists,

pulley blocks, wrist watches etc.

13.8. Velocity Ratioz of Epicyclic Gear Train

The following two methods may be used for finding out the velocity ratio of an epicyclic

gear train.

1. Tabular method, and 2. Algebraic method.

These methods are discussed, in detail, as follows :

1. Tabular method. Consider an epicyclic gear train as shown in Fig. 13.6.

Let T
A

 = Number of teeth on  gear A , and

T
B
 = Number of teeth on gear B.

First of all, let us suppose that

the arm is fixed. Therefore the axes of

both the gears are also fixed relative to

each other. When the gear A  makes one

revolution anticlockwise, the gear B will

make *T
A

 / T
B 

revolutions, clockwise.

Assuming the anticlockwise rotation as

positive and clockwise as negative, we

may say that when gear A  makes + 1

revolution, then the gear B will make

(– T
A 

/ T
B
) revolutions. This statement

of relative motion is entered in the first

row of the table (see Table 13.1).

Secondly, if the gear A  makes

+ x revolutions, then the gear B will

make – x × T
A 

/ T
B 

 revolutions. This

statement is entered in the second row

of the table. In other words, multiply

the each motion (entered in the first row) by x.

Thirdly, each element of an epicyclic train is given + y revolutions and entered in the third

row. Finally, the motion of each element of the gear train is added up and entered in the fourth row.

* We know that N
B
 / N

A
 = T

A
 / T

B
. Since N

A
 = 1 revolution, therefore N

B
 = T

A
 / T

B
.

Fig. 13.6. Epicyclic gear train.

Inside view of a car engine.

Note : This picture is given as additional information and is not

a direct example of the current chapter.
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Arm fixed-gear A  rotates through + 1

revolution i.e. 1 rev. anticlockwise

Arm fixed-gear A  rotates through + x

revolutions

Add + y revolutions to all elements

Total motion

Table 13.1. Table of motions

Revolutions of elements

Step No. Conditions of motion Arm C Gear A Gear B

1. 0 + 1
A

B

–
T

T

2. 0 + x
A

B

–
T

x
T

×

3. + y + y + y

4. + y x + y
A

B

–
T

y x
T

×

A little consideration will show that when two conditions about the motion of rotation of any

two elements are known, then the unknown speed of the third element may be obtained by substitut-

ing the given data in the third column of the fourth row.

2. Algebraic method. In this method, the motion of each element of the epicyclic train relative

to the arm is set down in the form of equations. The number of equations depends upon the number of

elements in the gear train. But the two conditions are, usually, supplied in any epicyclic train viz. some

element is fixed and the other has specified motion. These two conditions are sufficient to solve all the

equations ; and hence to determine the motion of any element in the epicyclic gear train.

Let the arm C be fixed in an epicyclic gear train as shown in Fig. 13.6. Therefore speed of the

gear A  relative to the arm C

= N
A 

– N
C

and speed of the gear B relative to the arm C,

= N
B 

– N
C

Since the gears A  and B are meshing directly, therefore they will revolve in opposite directions.

∴ B C A

A C B

–
–

–

N N T

N N T
=

Since the arm C is fixed, therefore its speed, N
C
 = 0.

∴ B A

A B

–
N T

N T
=

If the gear A  is fixed, then N
A 

= 0.

B C A

C B

–
–

0 –

N N T

N T
= or B A

C B

1
N T

N T
= +

Note : The tabular method is easier and hence mostly used in solving problems on epicyclic gear train.

Example 13.4. In an epicyclic gear train, an arm carries

two gears A and B having 36 and 45 teeth respectively. If the arm

rotates at 150 r.p.m. in the anticlockwise direction about the centre

of the gear A which is fixed, determine the speed of gear B. If the

gear A instead of being fixed, makes 300 r.p.m. in the clockwise

direction, what will be the speed of gear B ?

Solution. Given : T
A 

= 36 ; T
B 

= 45 ; N
C 

= 150 r.p.m.

(anticlockwise)

The gear train is shown in Fig. 13.7. Fig. 13.7



Chapter 13 : Gear Trains   �  439

Arm fixed-gear A  rotates through + 1

revolution (i.e. 1 rev. anticlockwise)

Arm fixed-gear A  rotates through + x

revolutions

Add + y revolutions to all elements

Total motion

We shall solve this example, first by tabular method and then by algebraic method.

1. Tabular method

First of all prepare the table of motions as given below :

Table 13.2. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm C Gear A Gear B

1. 0 + 1
A

B

–
T

T

2. 0 + x
A

B

–
T

x
T

×

3. + y + y + y

4. + y x + y
A

B

–
T

y x
T

×

Speed of gear B when gear A is fixed

Since the speed of arm is 150 r.p.m. anticlockwise, therefore from the fourth row of the table,

y = + 150 r.p.m.

Also the gear A  is fixed, therefore

x + y = 0 or x = – y = – 150 r.p.m.

∴  Speed of gear B,   A
B

B

36
– 150 150 270 r.p.m.

45

T
N y x

T
= × = + × =+

= 270 r.p.m. (anticlockwise)  Ans.

Speed of gear B when gear A makes 300 r.p.m. clockwise

Since the gear A  makes 300 r.p.m.clockwise, therefore from the fourth row of the table,

x + y = – 300 or x = – 300 – y = – 300 – 150 = – 450 r.p.m.

∴  Speed of gear B,

       
A

B

B

36
– 150 450 510 r.p.m.

45

T
N y x

T
= × = + × =+

      = 510 r.p.m. (anticlockwise)   Ans.

2.  Algebraic method

Let N
A 

= Speed of gear A .

N
B 

= Speed of gear B, and

N
C 

= Speed of arm C.

Assuming the arm C to be fixed, speed of gear A  relative to arm C

= N
A 

– N
C

and speed of gear B relative to arm  C = N
B 

– N
C
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Since the gears A  and B revolve in opposite directions, therefore

B C A

A C B

–
–

–

N N T

N N T
= ...(i)

Speed of gear B when gear A is fixed

When gear A  is fixed, the arm rotates at 150 r.p.m. in the anticlockwise direction, i.e.

N
A 

= 0, and N
C 

= + 150 r.p.m.

∴ B – 150 36
– – 0.8

0 – 150 45

N = = ...[From equation (i)]

or N
B
 = – 150 × – 0.8 + 150 = 120 + 150 = 270 r.p.m.  Ans.

Speed of gear B when gear A makes 300 r.p.m. clockwise

Since the gear A  makes 300 r.p.m. clockwise, therefore

N
A

 = – 300 r.p.m.

∴ B – 150 36
– – 0.8

–300 – 150 45

N = =

or NB = – 450 × – 0.8 + 150 = 360 + 150 = 510 r.p.m. Ans.

Example 13.5. In a reverted epicyclic gear

train, the arm A carries two gears B and C and a

compound gear D - E. The gear B meshes with gear E

and the gear C meshes with gear D. The number of teeth

on gears B, C and D are 75, 30 and 90 respectively.

Find the speed and direction of gear C when gear B is

fixed and the arm A makes 100 r.p.m. clockwise.

Solution. Given : T
B 

= 75 ; T
C 

= 30 ; T
D  

= 90 ;

N
A 

= 100 r.p.m. (clockwise)

The reverted epicyclic gear train is

shown in Fig. 13.8. First of all, let us find the

number of teeth on gear E (T
E
). Let d

B 
, d

C
 , d

D

and d
E 

be the pitch circle diameters of gears B,

C, D and E respectively. From the geometry of

the figure,

 d
B 

+ d
E 

= d
C 

+ d
D

Since the number of teeth on each gear,

for the same module, are proportional to their

pitch circle diameters, therefore

 T
B 

+ T
E 

= T
C 

+ T
D

      ∴         T
E 

= T
C 

+ T
D 

– T
B 

= 30 + 90 – 75 = 45

The table of motions is drawn as

follows :

Fig. 13.8

A gear-cutting machine is used to cut gears.
Note : This picture is given as additional information

and is not a direct example of the current chapter.
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Arm fixed-compound gear D-E

rotated through + 1 revolution ( i.e.

1 rev. anticlockwise)

Arm fixed-compound gear D-E

rotated through + x revolutions

Add + y revolutions to all elements

Total motion

 Table 13.3. Table of motions.

Revolutions of elements

Step Conditions of motion Arm A Compound Gear B Gear C

No. gear D-E

1. 0 + 1
E

B

–
T

T

D

C

–
T

T

2. 0 + x
E

B

–
T

x
T

× D

C

–
T

x
T

×

3. + y + y + y + y

4. + y x + y
E

B

–
T

y x
T

× D

C

–
T

y x
T

×

Since the gear B is fixed, therefore from the fourth row of the table,

E

B

– 0
T

y x
T

× = or
45

– 0
75

y x × =

∴ y – 0.6 = 0 ...(i)

Also the arm A  makes 100 r.p.m. clockwise, therefore

y = – 100 ...(ii)

Substituting y = – 100 in equation (i), we get

– 100 – 0.6 x = 0 or x = – 100 / 0.6 = – 166.67

 Model of sun and planet gears.

INPUT

Spline to Accept

Motor Shaft

Housing OD Designed to meet

RAM Bore Dia, and Share Motor

Coolant Supply

OUTPUT- External Spline to

Spindle

Ratio Detection SwitchesHydraulic or Pneumatic Speed

Change Actuator

Round Housing With O-ring

Seated Cooling Jacket

Motor Flange

Hollow Through Bore for

Drawbar Integration



442  �   Theory of Machines

From the fourth row of the table, speed of gear C,

D
C

C

90
– – 100 166.67 400 r.p.m.

30

T
N y x

T
= × = + × =+

= 400 r.p.m. (anticlockwise) Ans.

13.9. Compound Epicyclic Gear Train—Sun and Planet Gear

A compound epicyclic

gear train is shown in Fig. 13.9.

It consists of two co-axial shafts

S
1 
and S

2
, an annulus gear A which

is fixed, the compound gear (or

planet gear) B-C, the sun gear D

and the arm H. The annulus gear

has internal teeth and the com-

pound gear is carried by the arm

and revolves freely on a pin of the

arm H. The sun gear is co-axial

with the annulus gear and the arm

but independent of them.

The annulus gear A

meshes with the gear B and the

sun gear D meshes with the gear

C. It may be noted that when the

annulus gear is fixed, the sun gear

provides the drive and when the

sun gear is fixed, the annulus gear

provides the drive. In both cases, the arm acts as a follower.

Note : The gear at the centre is called the sun gear and the gears whose axes move are called planet gears.

Fig. 13.9. Compound epicyclic gear train.

Sun and Planet gears.

Speed Change

Shift Axis

Bearing Housing

Output Belt Pulley

Slide Dog

Clutch

Output Sun

Gear

Motor

Flange

Input Sun

Gear

Planet

Gears

Oil

Collector
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Arm fixed-gear C rotates through

+ 1 revolution (i.e. 1 rev.

anticlockwise)

Arm fixed-gear C rotates through

+ x revolutions

Add + y  revolutions to all

elements

Total motion

Arm fixed-gear D rotates

through + 1 revolution

Arm fixed-gear D rotates

through + x revolutions

Add + y revolutions to all

elements

Total motion

Let T
A 

, T
B 

, T
C 

, and T
D 

be the teeth and N
A

, N
B
, N

C 
 and N

D 
 be the speeds for the gears A , B,

C and D respectively. A little consideration will show that when the arm is fixed and the sun gear D is

turned anticlockwise, then the compound gear B-C and the annulus gear A will rotate in the clockwise

direction.

The motion of rotations of the various elements are shown in the table below.

Table 13.4. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Gear D Compound gear Gear A

No. B-C

1. 0 + 1
D

C

–
T

T

D B

C A

–
T T

T T
×

2. 0 + x
D

C

–
T

x
T

× D B

C A

–
T T

x
T T

× ×

3. + y + y + y  + y

4. + y x + y
D

C

–
T

y x
T

× D B

C A

–
T T

y x
T T

× ×

Note : If the annulus gear A  is rotated through one revolution anticlockwise with the arm fixed, then the

compound gear rotates through T
A 

/ T
B 

revolutions in the same sense and the sun gear D rotates through

 T
A 

/ T
B 

× T
C 

/ T
D 

revolutions in clockwise direction.

Example 13.6. An epicyclic gear consists of three gears A, B and C as shown in Fig. 13.10.

The gear A has 72 internal teeth and gear C has 32 external teeth. The gear B meshes with both A

and C and is carried on an arm EF which rotates about the centre of A at 18 r.p.m.. If the gear A is

fixed, determine the speed of gears B and C.

Solution. Given : T
A 

= 72 ; T
C 

= 32 ; Speed of arm EF
 
= 18 r.p.m.

Considering the relative motion of rotation as shown in Table 13.5.

Table 13.5. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm EF Gear C Gear B Gear A

1. 0 + 1
C

B

–
T

T

C B C

B A A

– –
T T T

T T T
× =

2. 0 + x
C

B

–
T

x
T

× C

A

–
T

x
T

×

3. + y + y + y + y

4. + y x + y
C

B

–
T

y x
T

× C

A

–
T

y x
T

×
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Speed of gear C

We know that the speed of the arm is 18 r.p.m. therefore,

y = 18 r.p.m.

and the gear A  is fixed, therefore

C

A

– 0
T

y x
T

× = or 32
18 – 0

72
x × =

∴ x = 18 × 72 / 32 = 40.5

∴   Speed of gear C         = x + y = 40.5 + 18

= + 58.5 r.p.m.

= 58.5 r.p.m. in the direction

of arm.  Ans.

Speed of gear B

Let d
A

, d
B 

and d
C 

be the pitch circle diameters of gears

A , B and C respectively. Therefore, from the geometry of Fig. 13.10,

                
C A

B
2 2

d d
d + = or 2 d

B 
+ d

C 
= d

A

Since the number of teeth are proportional to their pitch circle diameters, therefore

               2 T
B
  + T

C
 = T

A
         or            2 T

B 
+ 32 = 72 or T

B
 = 20

∴   Speed of gear B          C

B

32
– 18 – 40.5 – 46.8 r.p.m.

20

T
y x

T
= × = × =

               = 46.8 r.p.m. in the opposite direction of arm.  Ans.

Example 13.7. An epicyclic train of gears is arranged as shown in

Fig.13.11. How many revolutions does the arm, to which the pinions B and

C are attached, make :

1. when A makes one revolution clockwise and D makes half a

revolution anticlockwise, and

2. when A makes one revolution clockwise and D is stationary ?

The number of teeth on the gears A and D are 40 and 90

respectively.

Solution. Given : T
A

 = 40 ; T
D 

= 90

First of all, let us find the number of teeth on gears B and C (i.e. T
B 

and T
C
). Let  d

A
, d

B
, d

C

and d
D 

be the pitch circle diameters of gears A , B, C and D respectively. Therefore from the geometry

of the figure,

d
A 

+ d
B 

+ d
C 

= d
D

or d
A 

+ 2 d
B 

= d
D

...(�  d
B 

= d
C
)

Since the number of teeth are proportional to their pitch circle diameters, therefore,

T
A 

+ 2 T
B 

= T
D

or 40 + 2 T
B 

= 90

∴ T
B 

= 25, and T
C 

= 25 ...(�  T
B
 = T

C
)

Fig. 13.10

Fig. 13.11
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The table of motions is given below :

Table 13.6. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm Gear A Compound Gear D

gear B-C

1. 0 – 1
A

B

T

T
+ A B A

B D D

T T T

T T T
+ × = +

2. 0 – x
A

B

T
x

T
+ × A

D

T
x

T
+ ×

3. – y – y – y – y

4. – y – x – y
A

B

–
T

x y
T

× A

D

–
T

x y
T

×

1. Speed of arm when A makes 1 revolution clockwise and D makes half revolution anticlockwise

Since the gear A  makes 1 revolution clockwise, therefore from the fourth row of the table,

– x – y = –1 or x + y = 1 ...(i)

Also, the gear D makes half revolution anticlockwise, therefore

A

D

1
–

2

T
x y

T
× = or 40 1

–
90 2

x y× =

∴ 40 x – 90 y = 45 or x – 2.25 y = 1.125 ...(ii)

From equations (i) and (ii),   x = 1.04 and y = – 0.04

∴            Speed of arm = – y = – (– 0.04) = + 0.04

= 0.04 revolution anticlockwise  Ans.

2. Speed of arm when A makes 1 revolution clockwise and D is stationary

Since the gear A  makes 1 revolution clockwise, therefore from the fourth row of the

table,

– x – y = – 1 or x + y = 1 ...(iii)

Also the gear D is stationary, therefore

A

D

– 0
T

x y
T

× = or
40

– 0
90

x y× =

∴ 40 x – 90 y = 0 or x – 2.25 y = 0 ...(iv)

From equations (iii) and (iv),

x = 0.692 and y = 0.308

∴      Speed of arm = – y = – 0.308 = 0.308 revolution clockwise Ans.

Arm fixed , gear A  rotates

through – 1 revolution (i.e. 1

rev. clockwise)

Arm fixed, gear A  rotates

through – x revolutions

Add – y  revolutions to all

elements

Total motion
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Example 13.8. In an epicyclic gear train, the internal wheels A and B and compound wheels

C and D rotate independently about axis O. The wheels E and F rotate on pins fixed to the arm G. E

gears with A and C and F gears with B and D. All the wheels have

the same module and the number of teeth are :  T
C 

= 28;  T
D 

= 26;

T
E 

= T
F 

= 18.

1. Sketch the arrangement ; 2. Find the number of teeth on

A and B ; 3. If the arm G makes 100 r.p.m. clockwise and A is fixed,

find the speed of B ; and 4. If the arm G makes 100 r.p.m. clockwise

and wheel A makes 10 r.p.m. counter clockwise ; find the speed of

wheel B.

Solution. Given : T
C 

= 28 ; T
D 

= 26 ; T
E 

= T
F 

= 18

1. Sketch the arrangement

The arrangement is shown in Fig. 13.12.

2. Number of teeth on wheels A and B

Let              TA = Number of teeth on wheel A , and

            T
B 

= Number of teeth on wheel B.

If d
A 

, d
B 

, d
C 

, d
D 

, d
E 

and d
F 

are the pitch circle diameters of wheels A , B, C, D, E and F

respectively, then from the geometry of Fig. 13.12,

            d
A 

= d
C 

+ 2 d
E

and             d
B 

 = d
D 

+ 2 d
F

Since the number of teeth are proportional to their pitch circle diameters, for the same

module, therefore

           T
A 

= T
C 

+ 2 T
E 

= 28 + 2 × 18 = 64 Ans.

and            T
B 

= T
D 

+ 2 T
F 

= 26 + 2 × 18 = 62 Ans.

3. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A is fixed

First of all, the table of motions is drawn as given below :

Table 13.7. Table of motions.

Revolutions of elements

Step Conditions of Arm Wheel Wheel Compound Wheel F Wheel B

No. motion G A E wheel C-D

1. 0 + 1
A

E

T

T
+ A E

E C

–
T T

T T
× A D

C F

T T

T T
+ × A D F

C F B

T T T

T T T
+ × ×

2. 0 + x
A

E

T
x

T
+ × A

C

–
T

x
T

× A D

C F

T T
x

T T
+ × × A D

C B

T T
x

T T
+ × ×

3. + y + y + y + y + y + y

4. + y x + y
A

E

T
y x

T
+ × A

C

–
T

y x
T

× A D

C F

T T
y x

T T
+ × × A D

C B

T T
y x

T T
+ × ×

Fig. 13.12

Arm fixed- wheel A

rotates through + 1

revolution (i.e. 1 rev.

anticlockwise)

Arm fixed-wheel A

rotates through + x

revolutions

Add + y revolutions

to all elements

Total motion

A

C

–
T

T
= A D

C B

T T

T T
= + ×
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Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the table,

y = – 100 ...(i)

Also, the wheel A  is fixed, therefore from the fourth row of the table,

x + y = 0 or x = – y = 100 ...(ii)

∴    Speed of wheel A D

C B

64 26
– 100 100 – 100 95.8 r.p.m.

28 62

T T
B y x

T T
= + × × = + × × = +

= – 4.2 r.p.m. = 4.2 r.p.m. clockwise  Ans.

4. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A makes 10 r.p.m. counter

clockwise

Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the

table

y = – 100 ...(iii)

Also the wheel A  makes 10 r.p.m. counter clockwise, therefore from the fourth row of the

table,

x + y = 10 or x = 10 – y = 10 + 100 = 110 ...(iv)

∴ Speed of wheel A D

C B

64 26
– 100 110 – 100 105.4 r.p.m.

28 62

T T
B y x

T T
= + × × = + × × = +

= + 5.4 r.p.m. = 5.4 r.p.m. counter clockwise  Ans.

Example 13.9. In an epicyclic gear of the ‘sun and planet’ type shown

in Fig. 13.13, the pitch circle diameter of the internally toothed ring is to be

224 mm and the module 4 mm. When the ring D is stationary, the spider A,

which carries three planet wheels C of equal size, is to make one revolution in

the same sense as the sunwheel B for every five revolutions of the driving

spindle carrying the sunwheel B. Determine suitable numbers of teeth for all

the wheels.

Solution. Given : d
D 

= 224 mm ; m = 4 mm ; N
A 

= N
B 

/ 5

Let T
B 

, T
C 

 and T
D 

be the number of teeth on the sun wheel B ,

planet wheels C and the internally toothed ring D. The table of motions is given below :

Table 13.8. Table of motions.

Revolutions of elements

Step No. Conditions of motion Spider A Sun wheel B Planet wheel C Internal gear D

1. 0 + 1
B

C

–
T

T

B C B

C D D

– –
T T T

T T T
× =

2. 0 + x
B

C

–
T

x
T

× B

D

–
T

x
T

×

3. + y + y + y + y

4. + y x + y
B

C

–
T

y x
T

× B

D

–
T

y x
T

×

Fig. 13.13

Spider A  fixed, sun wheel

B  rotates through + 1

revolution (i.e. 1 rev.

anticlockwise)

Spider A  fixed, sun wheel

B  rotates through + x

revolutions

Add + y revolutions to all

elements

Total motion
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We know that when the sun

wheel B makes + 5 revolutions, the spi-

der A  makes + 1 revolution. Therefore

from the fourth row of the table,

          y = + 1 ;  and  x + y = + 5

∴        x = 5 – y = 5 – 1 = 4

Since the internally toothed ring

D is stationary, therefore from the fourth

row of the table,

B

D

– 0
T

y x
T

× =

or B

D

1 – 4 0
T

T
× =

∴ B

D

1

4

T

T
= or T

D 
= 4 T

B
...(i)

We know that T
D 

= d
D 

/ m = 224 / 4 = 56 Ans.

∴ T
B 

= T
D 

/ 4 = 56 / 4 = 14 Ans. ...[From equation (i)]

Let d
B
, d

C 
and d

D 
be the pitch circle diameters of sun wheel B, planet wheels C and internally

toothed ring D respectively. Assuming the pitch of all the gears to be same, therefore from the geom-

etry of Fig. 13.13,

d
B 

+ 2 d
C 

= d
D

Since the number of teeth are proportional to their pitch circle diameters, therefore

T
B 

+ 2 T
C 

= T
D

or 14 + 2 T
C 

= 56

∴ T
C 

= 21 Ans.

Example 13.10. Two shafts A and B are co-axial. A gear C (50 teeth) is rigidly mounted

on shaft A. A compound gear D-E gears with C and an internal gear G. D has 20 teeth and gears

with C and E has 35 teeth and gears with an internal gear G. The gear G is fixed and is concen-

tric with the shaft axis. The compound gear D-E is mounted on a pin which projects from an arm

keyed to the shaft B. Sketch the arrangement and find the number of teeth on internal gear G

assuming that all gears have the same module. If the shaft A rotates at 110 r.p.m., find the speed

of shaft B.

Solution. Given : T
C 

= 50 ; T
D 

= 20 ; T
E 

= 35 ; N
A 

= 110 r.p.m.

The arrangement is shown in Fig. 13.14.

Number of teeth on internal gear G

Let d
C 

, d
D 

, d
E 

and d
G 

 be the pitch circle diameters of gears C, D, E and G respectively. From

the geometry of the figure,

G C D E

2 2 2 2

d d d d= + +

or d
G

 = d
C
 + d

D
 + d

E

Power transmission in a helicopter is essentially through

gear trains.
Note : This picture is given as additional information and is not a

direct example of the current chapter.

Main rotor Tail rotor

Tail boom

Landing skids Engine, transmis-

sion fuel, etc.

Cockpit

Drive shaft
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Let T
C 

, T
D 

, T
E 

and T
G 

be the number of teeth on gears C, D, E and G respectively. Since all

the gears have the same module, therefore number of teeth are proportional to their pitch circle

diameters.

   ∴ T
G 

= T
C 

+ T
D 

+ T
E 

= 50 + 20 + 35 = 105 Ans.

Fig. 13.14

Speed of shaft B

The table of motions is given below :

Table 13.9. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Gear C (or Compound Gear G

No. shaft A) gear D-E

1. 0 + 1
C

D

–
T

T

C E

D G

–
T T

T T
×

2. 0 + x
C

D

–
T

x
T

× C E

D G

–
T T

x
T T

× ×

3. + y + y + y + y

4. + y x + y
C

D

–
T

y x
T

× C E

D G

–
T T

y x
T T

× ×

Since the gear G is fixed, therefore from the fourth row of the table,

C E

D G

– 0
T T

y x
T T

× × = or 50 35
– 0

20 105
y x × × =

∴ 5
– 0

6
y x = ...(i)

Arm fixed - gear C rotates through + 1

revolution

Arm fixed - gear C rotates through + x

revolutions

Add + y revolutions to all elements

Total motion
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Since the gear C is rigidly mounted on shaft A , therefore speed of gear C and shaft A  is same.

We know that speed of shaft A  is 110 r.p.m., therefore from the fourth row of the table,

x + y = 100 ...(ii)

From equations (i) and (ii), x = 60, and    y = 50

∴                Speed of shaft B = Speed of arm = + y = 50 r.p.m. anticlockwise Ans.

Example 13.11.  Fig. 13.15 shows diagrammatically a compound

epicyclic gear train. Wheels A , D and E are free to rotate independently

on spindle O, while B and C are compound and rotate together on spindle

P, on the end of arm OP. All the teeth on different wheels have the same

module. A has 12 teeth, B has 30 teeth and C has 14 teeth cut externally.

Find the number of teeth on wheels D and E which are cut internally.

If the wheel A is driven clockwise at 1 r.p.s. while D is driven

counter clockwise at 5 r.p.s., determine the magnitude and direction of

the angular velocities of arm OP and wheel E.

Solution. Given : T
A 

= 12 ; T
B 

= 30 ;T
C 

= 14 ; N
A 

= 1 r.p.s. ; N
D 

= 5 r.p.s.

Number of teeth on wheels D and E

Let T
D 

and T
E 

 be the number of teeth on wheels D and E respectively. Let d
A 

, d
B 

, d
C 

, d
D 

and d
E

be the pitch circle diameters of wheels A , B, C, D and E respectively. From the geometry of the figure,

d
E
 = d

A
 + 2d

B
and d

D
 = d

E
 – (d

B
 – d

C
)

Since the number of teeth are proportional to their pitch circle diameters for the same module,

therefore

T
E 

= T
A 

+ 2T
B 

= 12 + 2 × 30 = 72  Ans.

and T
D 

= T
E 

– (T
B 

– T
C
) = 72 – (30 – 14) = 56  Ans.

Magnitude and direction of angular velocities of arm OP and wheel E

The table of motions is drawn as follows :

Table 13.10. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Wheel A Compound Wheel D Wheel E

No. wheel B-C

1. 0 – 1
A

B

T

T
+ A C

B D

T T

T T
+ × A B

B E

T T

T T
+ ×

A

E

T

T
= +

 2. 0 – x
A

B

T
x

T
+ × A C

B D

T T
x

T T
+ × × A

E

T
x

T
+ ×

3. – y – y – y – y – y

4. – y – x – y
A

B

–
T

x y
T

× A C

B D

–
T T

x y
T T

× × A

E

–
T

x y
T

×

Fig. 13.15

Arm fixed A  rotated through

– 1 revolution (i.e. 1 revolu-

tion clockwise)

Arm fixed-wheel A  rotated

through – x revolutions

Add – y revolutions to all ele-

ments

Total motion
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Since the wheel A  makes 1 r.p.s. clockwise, therefore from the fourth row of the table,

– x – y = – 1 or x + y = 1 ...(i)

Also, the wheel D makes 5 r.p.s. counter clockwise, therefore

CA

B D

– 5
TT

x y
T T

× × = or 12 14
– 5

30 56
x y× × =

∴ 0.1 x – y = 5 ...(ii)

From equations (i) and (ii),

x = 5.45 and y = – 4.45

∴  Angular velocity of arm OP

          = – y = –(– 4.45) = 4.45 r.p.s

= 4.45 × 2 π = 27.964 rad/s (counter clockwise) Ans.

and angular velocity of wheel A

E

12
– 5.45 – (– 4.45) 5.36 r.p.s.

72

T
E x y

T
= × = × =

= 5.36 × 2 π = 33.68 rad/s (counter clockwise)  Ans.

Example 13.12. An internal wheel B with 80 teeth is keyed to a shaft F. A fixed internal

wheel C with 82 teeth is concentric

with B. A compound wheel D-E

gears with the two internal wheels;

D has 28 teeth and gears with C

while E gears with B. The compound

wheels revolve freely on a pin which

projects from a disc keyed to a shaft

A co-axial with F. If the wheels have

the same pitch and the shaft A makes

800 r.p.m., what is the speed of the

shaft F ? Sketch the arrangement.

Solution. Given : T
B 

= 80 ; T
C

= 82 ; T
D 

= 28 ; N
A 

= 500 r.p.m.

The arrangement is shown in Fig. 13.16.

Fig. 13.16

First of all, let us find out the number of teeth on wheel E (T
E
). Let d

B 
, d

C 
, d

D 
and d

E 
be the

pitch circle diameter of wheels B, C, D and E respectively. From the geometry of the figure,

d
B 

= d
C 

– (d
D 

– d
E 

)

Helicopter
Note : This picture is given as additional information and is not a

direct example of the current chapter.
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or d
E 

= d
B 

+ d
D 

– d
C

Since the number of teeth are proportional to their pitch circle diameters for the same pitch,

therefore

T
E 

= T
B 

+ T
D 

– T
C 

= 80 + 28 – 82 = 26

The table of motions is given below :

Table 13.11. Table of motions.

Revolutions of elements

Step Conditions of motion Arm (or Wheel B (or Compound Wheel C

No. shaft A) shaft F)  gear D-E

1. 0 + 1
B

E

T

T
+ B D

E C

T T

T T
+ ×

2. 0 + x
B

E

T
x

T
+ × B D

E C

T T
x

T T
+ × ×

3. + y + y + y + y

4. + y x + y
B

E

T
y x

T
+ × B D

E C

T T
y x

T T
+ × ×

Since the wheel C is fixed, therefore from the fourth row of the table,

B D

E C

0
T T

y x
T T

+ × × = or
80 28

0
26 82

y x+ × × =

∴ y + 1.05 x = 0 ...(i)

Also, the shaft A  (or the arm) makes 800 r.p.m., therefore from the fourth row of the table,

y = 800 ...(ii)

From equations (i) and (ii),

x = – 762

∴  Speed of shaft F = Speed of wheel B = x + y = – 762 + 800 = + 38 r.p.m.

= 38 r.p.m. (anticlockwise) Ans.

Example 13.13. Fig. 13.17 shows an epicyclic gear

train known as Ferguson’s paradox. Gear A is fixed to the

frame and is, therefore, stationary. The arm B and gears C

and D are free to rotate on the shaft S. Gears A, C and D have

100, 101 and 99 teeth respectively. The planet gear has 20

teeth. The pitch circle diameters of all are the same so that the

planet gear P meshes with all of them. Determine the

revolutions of gears C and D for one revolution of the arm B.

Solution. Given : T
A 

= 100 ; T
C 

= 101 ; T
D 

= 99 ;

T
P 

= 20 Fig. 13.17

Arm fixed - wheel B  rotated

through + 1 revolution (i.e. 1

revolution anticlockwise)

Arm fixed - wheel B  rotated

through + x revolutions

Add + y  revolutions to all

elements

Total motion
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DO YOU KNOW ?
1. What do you understand by ‘gear train’? Discuss the various types of gear trains.

2. Explain briefly the differences between simple, compound, and epicyclic gear trains. What are the

special advantages of epicyclic gear trains ?

3. Explain the procedure adopted for designing the spur wheels.

4. How the velocity ratio of epicyclic gear train is obtained by tabular method?

5. Explain with a neat sketch the ‘sun and planet wheel’.

6. What are the various types of the torques in an epicyclic gear train ?

OBJECTIVE TYPE QUESTIONS
1. In a simple gear train, if the number of idle gears is odd, then the motion of driven gear will

(a) be same as that of driving gear

(b) be opposite as that of driving gear

(c) depend upon the number of teeth on the driving gear

(d) none of the above

2. The train value of a gear train is

(a) equal to velocity ratio of a gear train (b) reciprocal of velocity ratio of a gear train

(c) always greater than unity (d) always less than unity

3. When the axes of first and last gear are co-axial, then gear train is known as

(a) simple gear train (b) compound gear train

(c) reverted gear train (d) epicyclic gear train

4. In a clock mechanism, the gear train used to connect minute hand to hour hand, is

(a) epicyclic gear train (b) reverted gear train

(c) compound gear train (d) simple gear train

5. In a gear train, when the axes of the shafts, over which the gears are mounted, move relative to a fixed

axis, is called

(a) simple gear train (b) compound gear train

(c) reverted gear train (d) epicyclic gear train

6. A differential gear in an automobile is a

(a) simple gear train (b) epicyclic gear train

(c) compound gear train (d) none of these

7. A differential gear in automobilies is used to

(a) reduce speed (b) assist in changing speed

(c) provide jerk-free movement of vehicle (d) help in turning

ANSWERS

1. (a) 2. (b) 3. (c) 4. (b) 5. (d)

6. (b) 7. (d)

GO To FIRST



 

 

MODULE-III 

 

Combined Static and Inertia Force Analysis: Inertia forces analysis, velocity 

and acceleration of slider crank mechanism by analytical method, engine force 

analysis -piston effort, force acting along the connecting rod, crank effort. 

dynamically equivalent system, compound pendulum, correction couple. 
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Inertia
Forces in

Reciprocating
Parts

15
Features

1. Introduction.

2. Resultant Effect of a System of

Forces Acting on a Rigid Body.

3. D-Alembert’s Principle.

4. Velocity and Acceleration of

the Reciprocating Parts in

Engines.

5. Klien’s Construction.

6. Ritterhaus’s Construction.

7. Bennett’s Construction.

8. Approximate Analytical

Method for Velocity and

Acceleration of the Piston.

9. Angular Velocity and

Acceleration of the Connecting

Rod.

10. Forces on the Reciprocating

Parts of an Engine Neglecting

Weight of the Connecting Rod.

11. Equivalent Dynamical System.

12. Determination of Equivalent

Dynamical System of Two

Masses by Graphical Method.

13. Correction Couple to be

Applied to Make the Two Mass

Systems Dynamically

Equivalent.

14. Inertia Forces in a

Reciprocating Engine

Considering the Weight of

Connecting Rod.

15. Analytical Method for Inertia

Torque.

15.1. Introduction

The inertia force is an imaginary force, which when

acts upon a rigid body, brings it in an equilibrium position. It

is numerically equal to the accelerating force in magnitude,

but opposite in direction. Mathematically,

Inertia force   =  – Accelerating force = – m.a

where                       m =  Mass of the body, and

                                 a =   Linear acceleration of the centre

                                          of gravity of the body.

Similarly, the inertia torque is an imaginary torque,

which when applied upon the rigid body, brings it in equilib-

rium position. It is equal to the accelerating couple in magni-

tude but opposite in direction.

15.2. Resultant Effect of a System of Forces
Acting on a Rigid Body

Consider a rigid body acted upon by a system of

forces. These forces may be reduced to a single resultant force

CONTENTSCONTENTS

CONTENTSCONTENTS
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F whose line of action is at a distance h from the centre of

gravity G. Now let us assume two equal and opposite forces

(of magnitude F ) acting through G, and parallel to the

resultant force, without influencing the effect of the

resultant force F, as shown in Fig. 15.1.

A little consideration will show that the body is

now subjected to a couple (equal to F × h) and a force,

equal and parallel to the resultant force F passing through

G. The force F through G causes linear acceleration of the

c.g. and the moment of the couple (F × h) causes angular

acceleration of the body about an axis passing through G

and perpendicular to the point in which the couple acts.

Let α = Angular acceleration of the rigid body due to couple,

h = Perpendicular distance between the force and centre of gravity of the

body,

m = Mass of the body,

k = Least radius of gyration about an axis through G, and

I = Moment of inertia of the body about an axis passing through its centre

of gravity and perpendicular to the point in which the couple acts

= m.k2

We know that

           Force,           F = Mass × Acceleration = m.a ...(i)

and                                      F.h = m.k2.α = I.α 2...( . )I m k=� ...(ii)

From equations (i) and (ii), we can

find the values of a and α, if the values of F,

m, k, and h are known.

15.3. D-Alembert’s Principle

Consider a rigid body acted upon by

a system of forces. The system may be

reduced to a single resultant force acting on

the body whose magnitude is given by the

product of the mass of the body and the linear

acceleration of the centre of mass of the body.

According to Newton’s second law of

motion,

F = m.a ...(i)

where F = Resultant force acting on the body,

m = Mass of the body, and

a = Linear acceleration of the centre of mass of the body.

The equation (i) may also be written as:

F – m.a = 0 ...(ii)

A little consideration will show, that if the quantity – m.a be treated as a force, equal, opposite

Fig. 15.1. Resultant effect of a system of

forces acting on a rigid body.

The above picture  shows the reciprocating parts

of a 19th century oil engine.
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                       (1 cos ) (1 cos ) (1 cos ) (1 cos )
l

r l r
r

 = − θ + − φ = − θ + − φ  

                                       [(1 cos ) (1 cos )]r n= − θ + − φ ...(i)

From triangles CPQ and CQO,

                CQ  =  l sin φ = r sin θ  or  l/r  = sin θ/sin φ
∴                                 n  =  sin θ/sin φ   or  sin φ = sin θ/n ...(ii)

We know that,       ( )
1

1 2 2
2 2

2

sin
cos 11 sin

n

 θφ = = −− φ  
 

Expanding the above expression by binomial theorem, we get

                              

2

2

1 sin
cos 1 .....

2 n

θφ = − × + ...(Neglecting higher terms)

or                                 
2

2

sin
1 cos

2n

θ− φ= ...(iii)

Substituting the value of (1 – cos φ) in equation (i), we have

2 2

2

sin sin
(1 cos ) (1 cos )

22
x r rn

nn

   θ θ= =− θ + × − θ +   
  

..(iv)

Differentiating equation (iv) with respect to θ,

1 sin 2
sin 2 sin . cos sin

2 2

dx
r r

nd n

θ   θ + × θ θ= = θ +   θ    
... (v)

( 2 sin . cos sin 2 )θ θ = θ�

∴   Velocity of P with respect to O or velocity of the piston P,

     PO P

dx dx d dx
v v

dt d dt d

θ= = = × = × ω
θ θ

...( Ratio of change of angular velocity / )d dt= θ = ω�

Substituting the value of dx/dθ from equation (v), we have

                                    PO P

sin2
. sin

2
v v r

n

θ = = ω θ + 
 

...(vi)

Note: We know that by Klien’s construction,

        Pv OM= ω ×

Comparing this equation with equation (vi), we find that

     
sin 2

sin
2

OM r
n

θ θ +=  
 

Acceleration of the piston

Since the acceleration is the rate of change of velocity, therefore acceleration of the piston P,

       
P P P

P

dv dv dvd
a

dt d dt d

θ= = × = ×ω
θ θ
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Differentiating equation (vi) with respect to θ,

     
P cos 2 2 cos 2

cos. . cos
2

dv
r r

nd n

θ ×  θ θ += ω = ω θ +   θ   

Substituting the value of 
Pdv

dθ in the above equation, we have

                                        
2

P

cos 2 cos 2
. .cos cosa r r

n n

θ θ   = ω × ω = ωθ + θ +       ...(vii)

Notes: 1. When crank is at the inner dead centre (I.D.C.), then θ = 0°.

∴         
2 2

P
cos 0 1

. .cos 0 1a r r
n n

°   = ω = ω° + +     
2. When the crank is at the outer dead centre (O.D.C.), then θ = 180°.

∴         
2 2

P
cos 2 180 1

. .cos 180 1a r r
n n

× °   = ω = ω° + − +     
As the direction of motion is reversed at the outer dead centre therefore changing the sign of the above

expression,

        
2

P
1

. 1a r
n

 = ω −  

15.9. Angular Velocity and Acceleration of the Connecting Rod

Consider the motion of a connecting rod and a crank as shown in Fig. 15.7.From the geometry

of the figure, we find that

                             CQ  =  l sin φ = r sin θ

Above picture shows a diesel engine. Steam engine, petrol engine and diesel engine, all

have reciprocating parts such as piston, piston rod, etc.



526  �   Theory of Machines

∴                        sin
sin sin

r

l n

θφ = × θ = ...
l

n
r

 =  
�

Differentiating both sides with respect to time t,

                 
cos cos

cos
d d

dt n dt n

φ θ θ θφ × = × = × ω ...
d

dt

θ = ω  �

Since the angular velocity of the connecting rod PC is same as the angular velocity of point P

with respect to C and is equal to dφ/dt, therefore angular velocity of the connecting rod

                             PC

cos cos

cos cos

d

dt n n

φ θ ω ω θω = = × = ×
φ φ

We know that, ( )
1

1 2 2
2 2

2

sin
cos 11 sin

n

 θφ = = −− φ  
 

sin
... sin

n

θ φ =  
�

∴             PC 1
2 2 1/2

2 2

2

cos cos

1
( sin )sin

1

n n
n

n
n

ω θ ω θω = × = ×
− θ θ− 

 

                                    2 2 1/2

cos

( sin )n

ω θ=
− θ ...(i)

Angular acceleration of the connecting rod PC,

                               α
PC

 = Angular acceleration of P with respect to PC( )d
C

dt

ω
=

We know that

                      
PC PC PC( ) ( ) ( )d d dd

dt d dt d

ω ω ωθ= × = × ω
θ θ ...(ii)

...( / )d dtθ = ω�

Now differentiating equation (i), we get

PC
2 2 1/2

cos( )

( sin )

d d

nd d

ω θ ω
=  − θθ θ  

                       

2 2 1/2 2 2 –1/ 21
2

2 2

2 2 1/2 2 2 –1/ 2 2

2 2

2 2 1/2 2 2 –1/ 2 2

2 2

( sin ) ( sin )] [(cos ) ( sin ) 2 sin cos

sin

( sin ) ( sin ) ( sin ) sin cos

sin

( sin ) ( sin ) cos
sin

sin

n n

n

n n

n

n n

n

 − θ − θ − θ × − θ ×− θ θ
=ω 

− θ  
 − θ − θ + − θ θ θ=ω  

− θ 
 − θ − − θ θ= −ω θ 

− θ 

2 2 2

2 2 3/2

( sin ) cos
sin

( sin )

n

n

 − θ − θ= − ω θ 
− θ 

2 2 1/2...[Dividing and multiplying by ( sin ) ]n − θ
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2
2 2 2

2 2 3/ 2 2 2 3/ 2

sin sin ( 1)
(sin cos )

( sin ) ( sin )

n
n

n n

− ω θ −ω θ − = =− θ + θ − θ − θ
2 2...( sin cos 1)θ + θ =�

2 2
PC

PC 2 2 3/ 2

( ) sin ( 1)

( sin )

d n

d n

ω −ω θ −∴ α = × ω =
θ − θ            ...[From equation (ii)] ...(iii)

The negative sign shows that the sense of the acceleration of the connecting rod is such that it tends to

reduce the angle φ.

Notes: 1. Since sin2 θ is small as compared to n2, therefore it may be neglected. Thus, equations (i) and (iii) are

reduced to

2 2

PC PC 3

cos sin ( 1)
, and

n

n n

ω θ −ω θ −ω = α =

2. Also in equation (iii), unity is small as compared to n2, hence the term unity may be neglected.

∴
2

PC
sin

n

−ω θα =

Example 15.3. If the crank and the connecting rod are 300 mm and 1 m long respectively

and the crank rotates at a constant speed of 200 r.p.m., determine:1. The crank angle at which the

maximum velocity occurs, and 2. Maximum velocity of the piston.

Solution. Given : r = 300 mm = 0.3 m ; l = 1 m ; N = 200 r.p.m. or ω = 2 π × 200/60 = 20.95 rad/s

1. Crank angle at which the maximum velocity occurs

Let θ = Crank angle from the inner dead centre at which the maximum

velocity occurs.

We know that ratio of length of connecting rod to crank radius,

n = l/r = 1/0.3 = 3.33

and velocity of the piston,

                                P

sin 2
sin.

2
v r

n

θ θ += ω  
 

...(i)

For maximum velocity of the piston,

               
P 2 cos 2

0 . . . 0cos
2

dv
i e r

d n

θ = ω =θ + θ  

or  n cos θ + 2 cos2 θ – 1 = 0  2
...( cos 2 2 cos 1)θ = θ −�

          2 cos2 θ + 3.33 cos θ – 1 = 0

∴                        

23.33 (3.33) 4 2 1
cos 0.26

2 2

− ± + × ×
θ = =

× ...(Taking + ve sign)

or                                 θ  =  75º Ans.

2. Maximum velocity of the piston

Substituting the value of θ = 75° in equation (i), maximum velocity of the piston,

                            P( )

sin150 0.5
. 20.95 0.3 m/ssin 75 0.966

2 3.33
maxv r

n

°   = ω = ×° + +      
                                        =  6.54  m/s   Ans.
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Example 15.4.  The crank and connecting rod of a steam engine are 0.3 m and 1.5 m in

length. The crank rotates at 180 r.p.m. clockwise. Determine the velocity and acceleration of the

piston when the crank is at 40 degrees from the inner dead centre position. Also determine the

position of the crank for zero acceleration of the piston.

Solution. Given : r = 0.3; l = 1.5 m ; N = 180 r.p.m. or ω = π × 180/60 = 18.85 rad/s; θ = 40°

Velocity of the piston

We know that ratio of lengths of the connecting rod and crank,

                                n  =  l/r = 1.5/0.3 = 5

∴  Velocity of the piston,

P

sin 80sin 2
sin 40. 18.85 0.3 m/ssin

2 52
v r

n

° θ  ° += ω = ×θ +   ×   
      = 4.19 m/s  Ans.

Acceleration of the piston

We know that acceleration of piston,

                                   

2 2 2
P

cos 2 cos80
. (18.85) 0.3 m/scos cos 40

5
a r

n

θ °   = ω = ×θ + ° +      

                    
285.35 m/s= Ans.

Position of the crank for zero acceleration of the piston

Let                           θ
1
 =  Position of the crank from the inner dead centre for zero acceleration

     of the piston.

We know that acceleration of piston,

                              
2 1

P 1

cos 2
. cosa r

n

θ = ω θ +  

or                                         
2

1 1

.
0 ( cos cos 2 )

r
n

n

ω= θ + θ P...( 0)a =�

∴    n cos θ
1
 + cos 2θ

1
 = 0

           5 cos θ
1
 + 2 cos2 θ

1
 – 1 = 0           or 2 cos2 θ

1
 + 5 cos θ

1
 – 1 = 0

∴                     
2

1

5 5 4 1 2
cos 0.1862

2 2

− ± + × ×
θ = =

× ...(Taking + ve sign)

or                             θ
1
 = 79.27° or 280.73°   Ans.

Example 15.5. In a slider crank mechanism, the length of the crank and connecting rod are

150 mm and 600 mm respectively. The crank position is 60° from inner dead centre. The crank shaft

speed is 450 r.p.m. (clockwise). Using analytical method, determine: 1. Velocity and acceleration of

the slider, and 2. Angular velocity and angular acceleration of the connecting rod.

Solution. Given : r = 150 mm = 0.15 m ; l = 600 mm = 0.6 m ; θ = 60°; N = 400 r.p.m or

ω = π × 450/60 = 47.13 rad/s

1. Velocity and acceleration of the slider

We know that ratio of the length of connecting rod and crank,

                        n  =  l / r = 0.6 / 0.15 = 4
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∴  Velocity of the slider,

           P

sin 120sin 2
sin 60. 47.13 0.15 m/ssin

2 42
v r

n

° θ  ° += ω = ×θ +   ×   
  = 6.9 m/s  Ans.

and acceleration of the slider,

                          

2 2 2
P

2

cos 2 cos 120
. (47.13) 0.15 m/scos cos 60

4

124.94 m/s

a r
n

θ °   = ω = ×θ + ° +     
=

2.  Angular velocity and angular acceleration of the connecting rod

We know that angular velocity of the connecting rod,

                        
PC

cos 47.13 cos 60
5.9 rad/s

4n

ω θ × °ω = = = Ans.

and angular acceleration of the connecting rod,

                        

2 2
2

PC

sin (47.13) sin 60
481 rad/s

4n

ω θ × °α = = = Ans.

15.10. Forces on the Reciprocating Parts of an Engine, Neglecting the
Weight of the Connecting Rod

The various forces acting on the reciprocating parts of a horizontal engine are shown in Fig.

15.8. The expressions for these forces, neglecting the weight of the connecting rod, may be derived as

discussed below :

1. Piston effort. It is the net force acting on the piston or crosshead pin, along the line of

stroke. It is denoted by F
P
 in Fig. 15.8.

Fig. 15.8.  Forces on the reciprocating parts of an engine.

Let                     m
R
 =   Mass of the reciprocating parts, e.g. piston, crosshead pin or

   gudgeon pin etc., in kg, and

                           W
R
 =   Weight of the reciprocating parts in newtons = m

R
.g

We know that acceleration of the reciprocating parts,

                         
2

R P

cos 2
. cosa a r

n

θ = = ω θ +  

Ans.
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∴  *Accelerating force or inertia force of the reciprocating parts,

                                   
2

I R R R

cos 2
. . . cosF m a m r

n

θ = = ω θ +  
It may be noted that in a horizontal

engine, the reciprocating parts are

accelerated from rest, during the latter half

of the stroke (i.e. when the piston moves

from inner dead centre to outer dead

centre). It is, then, retarded during the latter

half of the stroke (i.e. when the piston

moves from outer dead centre to inner dead

centre). The inertia force due to the

acceleration of the reciprocating parts,

opposes  the force on the piston due to the

difference of pressures in the cylinder on

the two sides of the piston. On the other

hand, the inertia force due to retardation of the reciprocating parts, helps the force on the piston.

Therefore,

Piston effort,     P Net load on the piston Inertia forceF = �

                                                     L IF F= � ...(Neglecting frictional resistance)

                                                         L I FF F R= −� ...(Considering frictional resistance)

where      R
F
 = Frictional resistance.

The –ve sign is used when the piston is accelerated, and +ve sign is used when the piston is

retarded.

In a double acting reciprocating steam engine, net load on the piston,

F
L

= p
1
A

1
 – p

2
 A

2
 = p

1
 A

1
 – p

2
 (A

1
 – a)

where                                p
1
, A

1
= Pressure and cross-sectional area on the back end side of the

piston,

p
2
, A

2
= Pressure and cross-sectional area on the crank end side of the

piston,

a = Cross-sectional area of the piston rod.

Notes : 1. If ‘p’ is the net pressure of steam or gas on the piston and D is diameter of the piston, then

Net load on the piston,  F
L
  =  Pressure × Area

2

4
p D

π= × ×

2. In case of a vertical engine, the weight of the reciprocating parts assists the piston effort during the

downward stroke (i.e. when the piston moves from top dead centre to bottom dead centre) and opposes during

the upward stroke of the piston (i.e. when the piston moves from bottom dead centre to top dead centre).

∴  Piston effort,     P L I R FF F F W R= ± −�

2. Force acting along the connecting rod. It is denoted by FQ in Fig. 15.8. From the geom-

etry of the figure, we find that

                              
P

Q
cos

F
F =

φ

Connecting rod of a petrol engine.

* The acceleration of the reciprocating parts by Klien’s construction is,

        a
P
 = ω2 × NO

          ∴                                              F
I
  =  m

R.
.
 
ω2  ×  NO
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We know that    

2

2

sin
cos 1

n

θφ = −

∴                           P
Q

2

2

sin
1

F
F

n

=
θ−

3. Thrust on the sides of the cylinder walls or normal reaction on the guide bars. It is

denoted by F
N

 in Fig. 15.8. From the figure, we find that

                              
P

N Q Psin sin tan
cos

F
F F F= φ = × φ= φ

φ
P

Q...
cos

F
F

 = φ 
�

4. Crank-pin effort and thrust on crank shaft bearings. The force acting on the connecting

rod F
Q

 may be resolved into two components, one perpendicular to the crank and the other along the

crank. The component of F
Q

 perpendicular to the crank is known as crank-pin effort and it is denoted

by F
T
 in Fig. 15.8. The component of F

Q
 along the crank produces a thrust on the crank shaft bearings

and it is denoted by F
B
 in Fig. 15.8.

Resolving F
Q

 perpendicular to the crank,

                               
P

T Q sin ( ) sin ( )
cos

F
F F= θ + φ = × θ + φ

φ
and resolving F

Q
 along the crank,

                               
P

B Q cos ( ) cos ( )
cos

F
F F= θ + φ = × θ + φ

φ
5. Crank effort or turning moment or torque on the crank shaft. The product of the crank-

pin effort (F
T
) and the crank pin radius (r) is known as crank effort or turning moment or torque on

the crank shaft. Mathematically,

 

P
T

P

P

sin ( )
Crank effort,

cos

(sin cos cos sin )

cos

sin
sin cos

cos

F
T F r r

F
r

F r

θ + φ= × = ×
φ

θ φ + θ φ= ×
φ

φ θ + θ ×= × φ 

                                     P (sin cos tan )F r= θ + θ φ × ...(i)

We know that l sin φ  = r sin θ

                           
sin

sin sin
r

l n

θφ = θ = ...
l

n
r

 =  
�

and                          

2
2 2 2

2

sin 1
cos 1 sin 1 sinn

nn

θφ = − φ = − = − θ

∴                        
2 2 2 2

sin sin sin
tan

cos sin sin

n

n n n

φ θ θφ = = × =
φ − θ − θ
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Substituting the value of tan φ in equation (i), we have crank effort,

                                   P 2 2

cos sin
sin

sin
T F r

n

θ θ θ += ×  − θ 

                                       P 2 2

sin 2
sin

2 sin
F r

n

θ θ += ×   − θ 
...(ii)

...( 2 cos sin sin 2 )θ θ = θ�

Note: Since sin2 θ is very small as compared to n2 therefore neglecting sin2 θ, we have,

Crank effort,                   P P
sin 2

sin
2

T F r F OM
n

θ = × = ×θ +  
We have seen in Art. 15.8, that

                                   
sin 2

sin
2

OM r
n

θ = θ +  
Therefore, it is convenient to find OM instead of solving the large expression.

Example 15.6. Find the inertia force for the following data of an I.C. engine.

Bore = 175 mm, stroke = 200 mm, engine speed = 500 r.p.m., length of connecting rod =

400 mm, crank angle = 60° from T.D.C and mass of reciprocating parts = 180 kg.

Solution. Given : *D =175 mm ; L = 200 mm = 0.2 m or r = L / 2 = 0.1 m ; N = 500 r.p.m. or

ω = 2π × 500/60 =52.4 rad/s ; l = 400 mm = 0.4 m ; mR = 180 kg

The inertia force may be calculated by graphical method or analytical method as discussed

below:

1. Graphical method

First of all, draw the Klien’s acceleration diagram OCQN to some suitable scale as shown in

Fig. 15.9. By measurement,

              ON  =  38 mm = 0.038 m

∴  Acceleration of the reciprocating parts,

     a
R
 = ω2 × ON

          = (52.4)2 × 0.038 = 104.34 m/s

We know that inertia force,

    F
I
 = m

R
 × a

R
 = 180 × 104.34 N

        = 18 780  N = 18.78 kN  Ans.

2. Analytical method

We know that ratio of lengths of connecting rod and crank,

     n  = l / r = 0.4 / 0.1 = 4

∴ Inertia force,         2
I R

cos 2
. . cosF m r

n

θ = ω θ +  

                                       
2 cos 120

180 (52.4) 0.1 18 530 Ncos 60
4

° = × × =° +  

         = 18.53 kN Ans.

Fig. 15.9

* Superfluous data.
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Example 15.7. The crank-pin circle radius of a horizontal engine is 300 mm. The mass of the

reciprocating parts is 250 kg. When the crank has travelled 60° from I.D.C., the difference between

the driving and the back pressures is 0.35 N/mm2. The connecting rod length between centres is 1.2 m

and the cylinder bore is 0.5 m. If the engine runs at 250 r.p.m. and if the effect of piston rod diameter

is neglected, calculate : 1. pressure on slide bars, 2. thrust in the connecting rod, 3. tangential force

on the crank-pin, and 4. turning moment on the crank shaft.

Solution. Given: r = 300 mm = 0.3 m ; m
R
 = 250 kg; θ = 60°; p

1
 – p

2
 = 0.35 N/mm2;

l = 1.2 m ; D = 0.5 m = 500 mm ; N = 250 r.p.m. or ω = 2 π × 250/60 = 26.2 rad/s

First of all, let us find out the piston effort (FP).

We know that net load on the piston,

                               
2 2

L 1 2( ) 0.35 (500) 68730 N
4 4

F p p D
π π

= − × = × =

...( Force = Pressure × Area)�

Ratio of length of connecting rod and crank,

                                  / 1.2 / 0.3 4n l r= = =
and accelerating or inertia force on reciprocating parts,

2
I R

cos 2
. cosF m r

n

θ = ω θ +  

       
2 cos 120

250 (26.2) 0.3 19306 Ncos 60
4

° = =° +  
∴ Piston effort,      F

P
 = F

L
 – F

I
 = 68 730 – 19 306 = 49 424 N = 49.424 kN

1. Pressure on slide bars

Let                              φ  =  Angle of inclination of the connecting rod to the line of stroke.

We know that,     
sin sin 60 0.866

sin 0.2165
4 4n

θ °φ = = = =

∴                               φ  = 12.5°

We know that pressure on the slide bars,

                             F
N

  =  F
P
 tan φ = 49.424 × tan 12.5° = 10.96 kN   Ans.

2. Thrust  in the connecting rod

We know that thrust in the connecting rod,

                               P
Q

49.424
50.62 kN

cos cos 12.5

F
F = = =

φ °
Ans.

3.  Tangential force on the crank-pin

We know that tangential force on the crank pin,

                               T Q sin ( ) 50.62 sin (60 12.5 ) 48.28 kNF F= θ + φ = ° + ° = Ans.

4. Turning moment on the crank shaft

We know that turning moment on the crank shaft,

   T 48.28 0.3 14.484 kN-mT F r= × = × = Ans.
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Example 15.8. A vertical double acting steam engine has a cylinder 300 mm diameter and

450 mm stroke and runs at 200 r.p.m. The reciprocating parts has a mass of 225 kg and the piston rod

is 50 mm diameter. The connecting rod is 1.2 m long. When the crank has turned through 125°

 from the top dead centre, the steam pressure above the piston is 30 kN/m2 and below the piston is 1.5

kN/m2. Calculate the effective turning moment on the crank shaft.

Solution. Given : D = 300 mm = 0.3 m ; L = 450 mm or r = L/2 = 225 mm = 0.225 m ;

N = 200 r.p.m. or ω = 2 π × 200/60 = 20.95 rad/s ; m
R
= 225 kg ; d = 50 mm = 0.05 m ; l = 1.2 m ;

θ = 125° ; p
1
 = 30 kN/m2 = 30 × 103 N/m2 ; p

2
 = 1.5 kN/m2 = 1.5 × 103 N/m2

We know that area of the piston,

                                 
2 2 2

1 (0.3) 0.0707 m
4 4

A D
π π= × = × =

and area of the piston rod,      
2 2 2(0.05) 0.001 96 m

4 4
a d

π π= × = × =

∴  Force on the piston due to steam pressure,

                                

L 1 1 2 1

3 3

. ( )

30 10 0.0707 1.5 10 (0.0707 0.001 96) N

= 2121 – 103 = 2018 N

F p A p A a= − −

= × × − × −

Ratio of lengths of connecting rod and crank,

   n  =  l / r  =  1.2 / 0.225 = 5.33

and inertia force on the reciprocating parts,

                                 

2
1 R

2

cos 2
. . cos

cos 250
225 (20.95) 0.225 14 172 Ncos 125

5.33

F m r
n

θ = ω θ +  
° = × = −° +  

We know that for a vertical engine, net force on the piston or piston effort,

  F
P
  =  F

L
 – F

I
 + m

R
.g

      =  2018 – (– 14 172) + 225 × 9.81 = 18 397 N

Let       φ =  Angle of inclination of the connecting rod to the line of stroke.

We know that,      
sin sin 125 0.8191

sin 0.1537
5.33 5.33n

θ °φ = = = =

∴                                8.84φ = °

We know that effective turning moment on the crank shaft,

   
P sin ( ) 18397 sin (125 8.84 )

0.225 N-m
cos cos 8.84

F
T r

× θ + φ ° + °= × = ×
φ °

                                     = 3021.6 N-m Ans.

Example 15.9. The crank and connecting rod of a petrol engine, running at 1800 r.p.m.are

50 mm and 200 mm respectively. The diameter of the piston is 80 mm and the mass of the reciprocat-

ing parts is 1 kg. At a point during the power stroke, the pressure on the piston is 0.7 N/mm2, when it

has  moved 10 mm from the inner dead centre. Determine : 1. Net load on the gudgeon pin, 2. Thrust

in the connecting rod, 3. Reaction between the piston and cylinder, and 4. The engine speed at which

the above values become zero.

Solution. Given : N = 1800 r.p.m. or ω = 2π × 1800/60 = 188.52 rad/s ; r = 50 mm = 0.05 m;

l = 200 mm ; D = 80 mm ; m
R
 = 1 kg ; p = 0.7 N/mm2 ; x = 10 mm
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1. Net load on the gudgeon pin

We know that load on the piston,

   
2 2

L (80) 0.7 3520 N
4 4

F D p
π π= × = × × =

Fig. 15.10

When the piston has moved 10 mm from the inner dead centre, i.e. when P
1
P = 10 mm, the

crank rotates from OC
1
 to OC through an angle θ as shown in Fig. 15.10.

By measurement, we find that *θ = 33°.

We know that ratio of lengths of connecting rod and crank,

     n  =  l/r = 200 /50 = 4

and inertia force on the reciprocating parts,

    

2
I R R R

2

cos 2
. . . cos

cos 66
1 (188.52) 0.05 1671 Ncos 33

4

F m a m r
n

θ = = ω θ +  
° = × × =° +  

We know that net load on the gudgeon pin,

   P L I 3520 1671 1849 NF F F= − = − = Ans.

2. Thrust in the connecting rod

Let φ = Angle of inclination of the connecting rod to the line of

stroke.

We know that,
sin sin 33 0.5446

sin 0.1361
4 4n

θ °φ = = = =

∴      φ   =  7.82°

* The angle θ may also be obtained as follows:

We know that   

2 2
sin 1 cos

(1 cos ) (1 cos )
2 2

x r r
n n

   θ − θ= =− θ + − θ +   
   

   

2
2501 cos

10 50 (1 cos ) (8 8 cos 1 cos
82 4

 − θ  = =− θ + − θ + − θ   × 

  = 50 – 50 cos θ + 6.25 – 6.25 cos2 θ
or 6.25 cos2 θ + 50 cos θ – 56.25 = 0

Solving this quadratic equation, we get θ = 33.14°
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We know that thrust in the connecting rod,

P
Q

1849
1866.3N

cos cos 7.82

F
F = = =

φ °
Ans.

3. Reaction between the piston and cylinder

We know that reaction between the piston and cylinder,

N P tan 1849 tan 7.82 254 NF F= φ = ° = AAns.

4. Engine speed at which the above values will become zero

A little consideration will show that the above values will become zero, if the inertia force on

the reciprocating parts (F
I
) is equal to the load on the piston (F

L
). Let ω

1
 be the speed in rad/s, at

which F
I
 = F

L
 .

∴     
2 2

R 1

cos 2
( ) cos

4
m r D p

n

πθ ω = ×θ +  

             
2 2 2

1 1

cos 66
1 ( ) 0.05 (80) 0.7 or 0.0 47 ( ) 3520cos 33

44

π° ω × = × × ω =° +  
∴  (ω

1
)2 = 3520 / 0.047 = 74 894 or ω

1
 = 273.6 rad/s

∴   Corresponding speed in r.p.m.,

N
1
 = 273.6 × 60 / 2π = 2612 r.p.m.  Ans.

Example 15.10. During a trial on steam engine, it is found that the acceleration of the piston

is 36 m/s2 when the crank has moved 30° from the inner dead centre position. The net effective steam

pressure on the piston is 0.5 N/mm2 and the frictional resistance is equivalent to a force of 600 N. The

diameter of the piston is 300 mm and the mass of the reciprocating parts is 180 kg. If the length of

the crank is 300 mm and the ratio of the connecting rod length to the crank length is 4.5, find:

1. Reaction on the guide bars, 2. Thrust on the crank shaft bearings, and 3. Turning moment on the

crank shaft.

Solution. Given : a
P
 = 36 m/s2 ; θ = 30°;  p = 0.5 N/mm2 ; R

F 
= 600 N; D = 300 mm ;

m
R
 = 180 kg ; r = 300 mm = 0.3 m ; n = l / r = 4.5

1. Reaction on the guide bars

First of all, let us find the piston effort (FP). We know that load on the piston,

2 2
L 0.5 (300) 35350 N

4 4
F p D

π π
= × × = × × =

Twin-cylinder aeroplane engine.



Chapter 15 : Inertia Forces in Reciprocating Parts   �  537

and inertia force due to reciprocating parts,

 F
I
 = m

R
 × a

P
 = 180 × 36 = 6480 N

∴  Piston effort,    F
P
 = F

L
 – F

I
 – R

F
 = 35 350 – 6480 – 600 = 28 270 N = 28.27 kN

Let φ = Angle of inclination of the connecting rod to the line of stroke.

We know that sin φ = sin θ/n = sin 30°/4.5 = 0.1111

∴   φ  = 6.38°

We know that reaction on the guide bars,

 F
N

 = F
P
 tan φ = 28.27 tan 6.38° = 3.16 kN Ans.

2. Thrust on the crank shaft bearing

We know that thrust on the crank shaft bearings,

P
B

cos ( ) 28.27 cos (30 6.38 )
22.9 kN

cos cos 6.38

F
F

θ + φ ° + °= = =
φ °

Ans.

3.  Turning moment on the crank shaft

We know that turning moment on the crank shaft,

P sin ( ) 28.27 sin (30 6.38 )
0.3 kN-m

cos cos 6.38

F
T r

θ + φ ° + °= × = ×
φ °

                                          5.06 kN-m=
Example 15.11.  A vertical petrol engine 100 mm diameter and 120 mm stroke has a

connecting rod 250 mm long. The mass of the piston is 1.1 kg. The speed is 2000 r.p.m. On the

expansion stroke with a crank 20° from top dead centre, the gas pressure is 700 kN/m2. Determine:

1. Net force on the piston, 2. Resultant load on the gudgeon pin,

3. Thrust on the cylinder walls, and 4. Speed above which, other things re-

maining same, the gudgeon pin load would be reversed in direction.

Solution. Given: D = 100 mm = 0.1 m ; L = 120 mm = 0.12 m or

r = L/2 = 0.06 m ; l = 250 mm = 0.25 m ; m
R
 = 1.1 kg ; N = 2000 r.p.m. or

ω = 2 π × 2000/60 = 209.5 rad/s ; θ = 20°; p = 700 kN/m2

1. Net force on the piston

The configuration diagram of a vertical engine is shown in Fig. 15.11.

We know that force due to gas pressure,

2 2
L 700 (0.1) 5.5 kN

4 4

= 5500 N

F p D
π π= × × = × × =

and ratio of lengths of the connecting rod and crank,

n = l/r = 0.25 /0.06 = 4.17

∴  Inertia  force on the piston,

2
I R

2

cos 2
. . cos

cos 40
1.1 (209.5) 0.06 cos 20

4.17

3254 N

F m r
n

θ = ω θ +  
° = × × × ° +  

=
Fig. 15.11
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We know that for a vertical engine, net force on the piston,

P L I R L I R .

5500 3254 1.1 9.81 2256.8 N

F F F W F F m g= − + = − +
= − + × =

2. Resultant load on the gudgeon pin

Let             φ  =  Angle of inclination of the connecting rod to the line of stroke.

We know that,

sin φ = sin θ / n = sin 20°/4.17 = 0.082

∴ φ   =  4.7°

We know that resultant load on the gudgeon pin,

P
Q

2256.8
2265 N

cos cos 4.7

F
F = = =

φ °
Ans.

3. Thrust on the cylinder walls

We know that thrust on the cylinder walls,

       N P tan 2256.8 tan 4.7 185.5 NF F= φ= × ° = Ans.

4. Speed, above which, the gudgeon pin load would be reversed in direction

Let N
1
 =  Required speed, in r.p.m.

The gudgeon pin load i.e. F
Q

 will be reversed in direction, if F
Q
 becomes negative. This is only

possible when F
P
 is negative. Therefore, for F

P
 to be negative, F

I
 must be greater than (F

L
 + W

R
),

i.e.
2

R 1

cos 2
( ) 5500 1.1 9.81cosm r

n

θ ω > + ×θ +  

2
1

cos 40
1.1 ( ) 0.06 5510.8cos 20

4.17

° × ω × >° +  
2 2

1 10.074 ( ) 5510.8 or ( ) 5510.8 / 0.074 or 74 470ω > ω >

or 1 273 rad/sω >

∴   Corresponding speed in r.p.m.,

1 273 60 / 2 or 2606 r.p.m.N > × π Ans.

Example 15. 12. A horizontal steam engine running at 120 r.p.m. has a bore of 250 mm and

a stroke of 400 mm. The connecting rod is 0.6 m and mass of the reciprocating parts is 60 kg. When

the crank has turned through an angle of 45° from the inner dead centre, the steam pressure on the

cover end side is 550 kN/m2 and that on the crank end side is 70 kN/m2. Considering the diameter of

the piston rod equal to 50 mm, determine:

1. turning moment on the crank shaft, 2. thrust on the bearings, and 3. acceleration of the

flywheel, if the power of the engine is 20 kW, mass of the flywheel 60 kg and radius of gyration 0.6 m.

Solution. Given : N = 120 r.p.m. or ω = 2π × 120/60 = 12.57 rad/s ; D = 250 mm = 0.25 m ;

L = 400 mm = 0.4 m or r = L/2 = 0.2 m ; l = 0.6 m ; m
R
 = 60 kg ; θ = 45° ; d = 50 mm = 0.05 m ;

p
1
 = 550 kN/m2 = 550 × 103 N/m2 ; p

2
 = 70 kN/m2 = 70 × 103 N/m2

Ans.
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Since the admission of steam is cut-off at 1/3rd of the stroke, therefore volume of steam at

cut-off,

            V
B
 = V

S  
/ 3 = 0.0163/3 = 0.005 43 m3

We know that ratio of the lengths of the connecting rod and crank,

              / 0.6 / 0.18 3.33n l r= = =
When the crank position is 75° from the top dead centre (i.e. when θ = 75°), the displacement

of the piston (marked by point C' on the expansion curve BC) is given by

              

2 2sin sin 75
0.18(1 cos ) 1 cos 75

2 2 3.33

0.1586 m

x r
n

   θ °= =− θ + − ° +   ×   
=

∴              
3

C S

0.1586
0.0163 0.0072 m

0.36

x
V V

L
′ = × = × =

Since the expansion is hyperbolic (i.e. according to the law pV = constant), therefore

             
B B C C. .p V p V′ ′=

or               

3
3 2B B

C

C

903 10 0.00543
681 10 N/m

0.0072

p V
p

V

× × ×′ = = = ×
′

∴   Difference of pressures on the two sides of the piston,

              3 3 3 2
C E 681 10 28 10 653 10 N/mp p p′= − = × − × = ×

We know that net load on the piston,

              
2 2 3

L (0.24) 653 10 29545 N
4 4

F D p
π π= × × = × × × =

and inertia force on the reciprocating parts,

2
I R

2

cos 2
. . cos

cos 150
160 (31.42) 0.18 36 Ncos75

3.33

F m r
n

θ = ω θ +  
° = × × = −° +  

∴   Piston effort,  P L I R RF F F W F= − + −

29545 ( 36) 160 9.81 500 30651 N= − − + × − =

Turning moment on the crankshaft

Let φ  =  Angle of inclination of the connecting rod to the line of stroke.

We know that sin φ  = sin θ/n = sin 75°/3.33 = 0.29

∴ φ   = 16.86°

We know that turning moment on the crankshaft

P sin ( ) 30651 sin (75 16.86 )
0.18 N-m

cos cos 16.86

= 5762 N-m

F
T r

θ + φ ° + °= × = ×
φ °

15.11.  Equivalent Dynamical System

In order to determine the motion of a rigid body, under the action of external forces, it is

usually convenient to replace the rigid  body by two masses placed at a fixed distance apart, in such

a way that,

Ans.
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1. the sum of their masses is equal to the total mass of the body ;

2. the centre of gravity of the two masses coincides with that of the body ; and

3. the sum of mass moment of inertia of the masses about their centre of gravity is equal to

the mass moment of inertia of the body.

When these three conditions are satisfied, then it is said to be an equivalent dynamical system.

Consider a rigid body, having its centre of gravity at G, as shown in Fig. 15.14.

Let  m = Mass of the body,

k
G

 = Radius of gyration about

   its centre of gravity G,

m
1
 and m

2
 = Two masses which form a

                  dynamical equivalent system,

l
1
 = Distance of mass m

1
 from G,

l
2
 = Distance of mass m

2
 from G,

   and

L = Total distance between the

   masses m
1
 and m

2
.

Thus, for the two masses to be dynamically equivalent,

                                          1 2m m m+ = ...(i)

                                                1 1 2 2. .m l m l= ...(ii)

and                    2 2 2
1 1 2 2 G( ) ( ) ( )m l m l m k+ = ...(iii)

From equations (i) and (ii),

2
1

1 2

.l m
m

l l
=

+ ...(iv)

and
1

2

1 2

.l m
m

l l
=

+ ...(v)

Substituting the value of m
1
 and m

2
 in equation (iii), we have

2 2 2 22 1 1 2 1 2
1 2 G G

1 2 1 2 1 2

. . . ( )
( ) ( ) ( ) or ( )

l m l m l l l l
l l m k k

l l l l l l

++ = =
+ + +

∴ 2
1 2 G. ( )l l k= ...(vi)

This equation gives the essential condition of placing the two masses, so that the system

becomes dynamical equivalent. The distance of one of the masses (i.e. either l
1
 or l

2
) is arbitrary

chosen and the other distance is obtained from equation (vi).

Note : When the radius of gyration k
G

 is not known, then the position of the second mass may be obtained by

considering the body as a compound pendulum. We have already discussed, that the length of the simple pendu-

lum which gives the same frequency as the rigid body (i.e. compound pendulum) is

2 2 2 2
G G 1

1

( ) ( ) ( )k h k l
L

h l

+ += = ..(Replacing h by l
1
)

We also know that 2
1 2 G. ( )l l k=

∴
2

1 2 1
2 1

1

. ( )l l l
L l l

l

+= = +

This means that the second mass is situated at the centre of oscillation or percussion of the

body, which is at a distance of l
2
 = (k

G
)2/l

1
.

Fig. 15.14. Equivalent

dynamical system.
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Fig. 15.16

Fig. 15.17

Fig. 15.15.  Determination of equivalent

dynamical system by graphical method.

15.12. Determination of Equivalent Dynamical System of Two Masses by
Graphical Method

Consider a body of mass m, acting at G as

shown in Fig. 15.15. This mass m, may be replaced

by two masses m
1
 and m

2
 so that the system becomes

dynamical equivalent. The position of mass m
1
 may

be fixed arbitrarily at A . Now  draw perpendicular

CG at G, equal in length of the radius of gyration of

the body, k
G 

. Then join A C and draw CB

perpendicular to AC intersecting AG produced in

B. The point B now fixes the position of the second

mass m
2
.

A little consideration will show that the

triangles ACG and BCG are similar. Therefore,

2G 2
G 1 2

1 G

or ( ) .
k l

k l l
l k

= =

                    ...(Same as before)

Example 15.15. The connecting rod of a gasoline engine

is 300 mm long between its centres. It has a mass of 15 kg and

mass moment of inertia of 7000 kg-mm2. Its centre of gravity is at

200 mm from its small end centre. Determine the dynamical

equivalent two-mass system of the connecting rod if one of the

masses is located at the small end centre.

Solution. Given : l = 300 mm ; m = 15 kg; I = 7000 kg-mm2 ;

l
1
 = 200 mm

The connecting rod is shown in Fig. 15.16.

Let   k
G

 = Radius of gyration of the connecting rod

           about an axis passing through its centre of

          gravity G.

We know that mass moment of inertia (I),

7000 = m (k
G

)2 = 15 (k
G

)2

∴ (k
G

)2 =  7000/15  =  466.7 mm2 or k
G

 = 21.6 mm

It is given that one of the masses is located at the small end

centre. Let the other mass is placed at a distance l
2
 from the centre

of gravity G, as shown in Fig. 15.17.

We know that for a dynamical equivalent system,

                2
1 2 G. ( )l l k=

∴    

2
G

2
1

( ) 466.7
2.33 mm

200

k
l

l
= = =

Let   m
1
 =  Mass placed at the small end

             centre, and

 m
2
 =     Mass placed at a distance l

2
 from

            the centre of gravity G.
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We know that

         
2

1

1 2

. 2.33 15
0.17 kg

200 2.33

l m
m

l l

×= = =
+ +

Ans.

and         
1

2

1 2

. 200 15
14.83 kg

200 2.33

l m
m

l l

×= = =
+ +

Ans.

Example 15.16.  A connecting rod is suspended from a point 25 mm above the centre of

small end, and 650 mm above its centre of gravity, its mass being 37.5 kg. When permitted to oscil-

late, the time period is found to be 1.87 seconds. Find the dynamical equivalent system constituted of

two masses, one of which is located at the small end centre.

Solution. Given : h = 650 mm = 0.65 m ; l
1
 = 650 – 25 = 625 mm

= 0.625 m ; m = 37.5 kg ; t
p
 = 1.87 s

First of all, let us find the radius of gyration (k
G

) of the connect-

ing rod (considering it is a compound pendulum), about an axis passing

through its centre of gravity, G.

We know that for a compound pendulum, time period of

oscillation (tp),

          

2 2 2 2
G G( ) ( ) (0.65)1.87

1.87 2 or
. 2 9.81 0.65

k h k

g h

+ +
= π =

π ×

Squaring both sides, we have

                

2
G( ) 0.4225

0.0885
6.38

k +=

                  2 2
G( ) 0.0885 6.38 0.4225 0.1425 mk = × − =

∴        k
G

 = 0.377 m

It is given that one of the masses is located at the small end centre.

Let the other mass is located at a distance l
2
 from the centre of gravity G,

as shown in Fig. 15.19. We know that, for a dynamically equivalent system,

                       l
1
.l

2
 = (k

G
)2

∴        
2

G
2

1

( ) 0.1425
0.228 m

0.625

k
l

l
= = =

Let       m
1
 = Mass placed at the small end

                   centre A , and

                        m
2
 =  Mass placed at a distance l

2
 from

  G, i.e. at B.

We know that, for a dynamically equivalent system,

                      
2

1

1 2

. 0.228 37.5
10 kg

0.625 0.228

l m
m

l l

×= = =
+ +  Ans.

and        1
2

1 2

. 0.625 37.5
27.5 kg

0.625 0.228

l m
m

l l

×= = =
+ +

Ans.

Fig. 15.18

Fig. 15.19
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Example 15.17. The following data relate to a connecting rod of a reciprocating engine:

Mass = 55 kg; Distance between bearing centres = 850 mm; Diameter of small end bearing

= 75 mm; Diameter of big end bearing = 100 mm; Time of oscillation when the connecting rod is

suspended from small end = 1.83 s; Time of  oscillation when the connecting rod is suspended from

big end = 1.68 s.

Determine: 1. the radius of gyration of the rod about an axis passing through the centre of

gravity and perpendicular to the plane of oscillation; 2. the moment of inertia of the rod about the

same axis; and 3. the dynamically equivalent system for the connecting rod, constituted of two masses,

one of which is situated at the small end centre.

 Solution. Given : m  = 55 kg ; l = 850 mm = 0.85 m ; d
1
 = 75 mm = 0.075 m ;

d
2
 = 100 mm = 0.1 m ; t

p1
 = 1.83 s ; t

p2
 = 1.68 s

First of all, let us find the lengths of the equivalent simple

pendulum when suspended

(a)  from the top of small end bearing; and

(b)  from the top of big end bearing.

Let L
1

= Length of equivalent simple pendulum

when  suspended from the top of small

end bearing,

L
2

= Length of equivalent simple pendulum

when suspended from the top of big end

bearing,

h
1

= Distance of centre of gravity, G, from the

top of small end bearing, and

h
2

= Distance of centre of gravity, G, from the

top of big end bearing.

We know that for a simple pendulum

2

11 1
1 2 or

2

p

p

tL L
t

g g

 
= π = π 

...(Squaring both sides)

∴   
2 2

1
1

1.83
9.81 0.832 m

22

pt
L g

   = = =   π π 

Similarly,

2 2
2

2

1.68
9.81 0.7 m

22

pt
L g

   = = =   π π 
1. Radius of gyration of the rod about an axis passing through the centre of gravity and perpen-

dicular to the plane of oscillation

Let k
G

 = Required radius of gyration of the rod.

We know that the length of equivalent simple pendulum,

2 2
2 2G

G

( )
or ( ) . ( )

k h
L k L h h h L h

h

+= = − = −

∴  When the rod is suspended from the top of small end bearing,

( )2

1 1 1G ( )h L hk = − ...(i)

Fig. 15.20
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and when the rod is suspended from the top of big end bearing,

                ( )2

2 2 2G ( )h L hk = − ...(ii)

Also, from the geometry of the Fig. 15.20,

                
1 2

1 2

0.075 0.1
0.85 0.9375 m

2 2 2 2

d d
h h l+ = + + = + + =

∴                2 10.9375h h= − ...(iii)

From equations (i) and (ii),

                1 1 1 2 2 2( ) ( )h L h h L h− = −
Substituting the value of h

2
 from equation (iii),

                 

[ ]1 1 1 1

2 2
1 1 1 1

1 1

(0.832 ) (0.9375 ) 0.7 (0.9375 )

0.832 ( ) 0.223 1.175 ( )

0.343 0.233 or 0.223 / 0.343 0.65 m

h h h h

h h h h

h h

− = − − −

− = − + −
= = =

Now from equation (i),

                2
G G( ) 0.65 (0.832 0.65) 0.1183 or 0.343 mk k= − = = Ans.

2. Moment of inertia of the rod

We know that moment of inertia of the rod,

               2 2
G( ) 55 0.1183 6.51 kg-mI m k= = × = Ans.

3. Dynamically equivalent system for the rod

Since one of the masses (m
1
) is situated at the centre of small end bearing, therefore its

distance from the centre of gravity, G, is

             l
1
 =  h

1
 – 0.075 / 2 = 0.65 – 0.0375 = 0.6125 m

Let                  m
2
 =  Magnitude of the second mass, and

              l
2
 = Distance of the second mass from the centre of gravity, G,

                     towards big  end bearing.

For a dynamically equivalent system,

                

2
2 G

1 2 G 2

1

( ) 0.1183
. ( ) or 0.193 m

0.6125

k
l l k l

l
= = = =

We know that 2
1

1 2

. 0.193 55
13.18 kg

0.6125 0.193

l m
m

l l

×= = =
+ +

Ans.

and
1

2

1 2

. 0.6125 55
41.82 kg

0.6125 0.193

l m
m

l l

×= = =
+ + Ans.

15.13. Correction Couple to be Applied to Make Two Mass System
Dynamically Equivalent

In Art. 15.11, we have discussed the conditions for equivalent dynamical system of two

bodies. A little consideration will show that when two masses are placed arbitrarily*, then the condi-

* When considering the inertia forces on the connecting rod in a mechanism, we replace the rod by two

masses arbitrarily. This is discussed in Art. 15.14.
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tions (i) and (ii) as given in Art. 15.11 will only be satisfied. But the condition (iii) is not possible to

satisfy. This means that the mass moment of inertia of these two masses placed arbitrarily, will differ

than that of mass moment of inertia of the rigid body.

Fig. 15.21. Correction couple to be applied to make the two-mass system dynamically equivalent.

Consider two masses, one at A  and the other at D be placed arbitrarily, as shown in Fig. 15.21.

Let l
3

= Distance of mass placed at D from G,

I
1

= New mass moment of inertia of the two masses;

k
1

= New radius of gyration;

α = Angular acceleration of the body;

I = Mass moment of inertia of a dynamically equivalent system;

k
G

= Radius of gyration of a dynamically equivalent system.

We know that the torque required to accelerate the body,

T = I.α = m (k
G

)2 α ...(i)

Similarly, the torque required to accelerate the two-mass system placed arbitrarily,

T
1

= I
1
.α = m (k

1
)2 α ...(ii)

∴  Difference between the torques required to accelerate the two-mass system and the torque

required to accelerate the rigid body,

T' = T
1
–T = m (k

1
)2 α – m (k

G
)2 α = m [(k

1
)2 – (k

G
)2] α ...(iv)

The difference of the torques T' is known as correction couple. This couple must be applied,

when the masses are placed arbitrarily to make the system dynamical equivalent. This, of course, will

satisfy the condition (iii) of Art. 15.11.

Note: We know that (k
G

)2 = l
1
.l

2 
,    and   (k

1
)2 = l

1
.l

3

∴  Correction couple, T' = m  (l
1
.l

3
 – l

1
.l

2
) α = m.l

l
 (l

3
 – l

2
) α

But l
3 

– l
2

= l – L

∴ T' = m .l
1
 (l – L) α

where l = Distance between the two arbitrarily masses, and

L = Distance between the two masses for a true dynamically equivalent

system. It is the equivalent length of a simple pendulum when a body

is suspended from an axis which passes through the position of mass

m , and perpendicular to the plane of rotation of the two mass system.

2 2
G 1

1

( ) ( )k l

l

+=



550  �   Theory of Machines

Example 15.18. A connecting rod of an I.C. engine has a mass of 2 kg and the distance

between the centre of gudgeon pin and centre of crank pin is 250 mm. The C.G. falls at a point 100  mm

from the gudgeon pin along the line of centres. The radius of gyration about an axis through the C.G.

perpendicular to the plane of rotation is 110 mm. Find the equivalent dynamical system if only one of

the masses is located at gudgeon pin.

If the connecting rod is replaced by two masses, one at the gudgeon pin and the other at the

crank pin and the angular acceleration of the rod is 23 000 rad/s2 clockwise, determine the correc-

tion couple applied to the system to reduce it to a dynamically equivalent system.

Solution. Given : m = 2 kg ; l = 250 mm = 0.25 m ; l
1
 = 100 mm = 0.1m ; k

G
 = 110 mm = 0.11 m ;

α = 23 000 rad/s2

Equivalent dynamical system

It is given that one of the masses is located at the gudgeon pin. Let the other mass be located

at a distance l
2
 from the centre of gravity. We know that for an equivalent dynamical system.

                                          

2 2
2 G

1 2 G 2
1

( ) (0.11)
. ( ) or 0.121 m

0.1

k
l l k l

l
= = = =

Let                          m
1
 = Mass placed at the gudgeon pin, and

                               m
2
 = Mass placed at a distance l

2
 from C.G.

We know that        
2

1

1 2

. 0.121 2
1.1 kg

0.1 0.121

l m
m

l l

×= = =
+ +

 Ans.

and                                     
1

2

1 2

. 0.1 2
0.9 kg

0.1 0.121

l m
m

l l

×= = =
+ + Ans.

Correction couple

Since the connecting rod is replaced by two masses located at the two centres (i.e. one at the

gudgeon pin and the other at the crank pin), therefore,

                                  l
 
= 0.1 m,   and   l

3
 = l – l

1
 = 0.25 – 0.1 = 0.15 m

Let                           k
1
 = New radius of gyration.

We know that        (k
1
)2= l

1
.l

3
 = 0.1 × 0.15 = 0.015 m2

∴   Correction couple,

                    
2 2 2
1 G( ) 2 23 000 133.4 N-m0.015 (0.11)T m k k′  = − α = =−  Ans.

Note : Since T' is positive, therefore, the direction of correction couple is same as that of angular acceleration

i.e. clockwise.

15.14. Inertia Forces in a Reciprocating Engine, Considering the Weight of
 Connecting Rod

In a reciprocating engine, let OC be the crank and PC, the connecting rod whose centre of

gravity lies at G. The inertia forces in a reciprocating engine may be obtained graphically as discussed

below:

1. First of all, draw the acceleration diagram OCQN by Klien’s construction. We know that

the acceleration of the piston P with respect to O,

                             a
PO

 = a
P
 = ω2 × NO,
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Determine the dynamically equivalent system keeping one mass at the small end. The frequency of

oscillation of the rod, when suspended from the centre of the small end is 43 vibrations per minute.

[Ans. 4.14 kg; 13.86 kg]

19. A small connecting rod 220 mm long between centres has a mass of 2 kg and a moment of inertia of

0.02 kg-m2 about its centre of gravity. The centre of gravity is located at a distance of 150 mm from

the small end centre. Determine the dynamically equivalent two mass system when one mass is lo-

cated at the small end centre.

If the connecting rod is replaced by two masses located at the two centres, find the correction couple

that must be applied for complete dynamical equivalence of the system when the angular acceleration

of the connecting rod is 20 000 rad/s2 anticlockwise.

[Ans. 0.617 kg; 1.383 kg; 20 N-m (anticlockwise)]

20. The connecting rod of a horizontal reciprocating engine is 400 mm and length of the stroke is 200

mm. The mass of the reciprocating parts is 125 kg and that the connecting rod is 100 kg. The radius

of gyration of the connecting rod about an axis through the centre of gravity is 120 mm and the

distance of centre of gravity of the connecting rod from big end centre is 160 mm. The engine runs at

750 r.p.m. Determine the torque exerted on the crankshaft when the crank has turned 30° from the

inner dead centre. [Ans. 7078 N-m]

21. If the crank has turned through 135° from the inner dead centre in the above question, find the torque

on the crankshaft. [Ans. 5235 N-m]

DO YOU KNOW ?

1. Define ‘inertia force’ and ‘inertia torque’.

2. Draw and explain Klien’s construction for determining the velocity and acceleration of the piston in a

slider crank mechanism.

3. Explain Ritterhaus’s and Bennett’s constructions for determining the acceleration of the piston of a

reciprocating engine.

4. How are velocity and acceleration of the slider of a single slider crank chain determined analytically?

5. Derive an expression for the inertia force due to reciprocating mass in reciprocating engine, ne-

glecting the mass of the connecting rod.

6. What is the difference between piston effort, crank effort and crank-pin effort?

7. Discuss the method of finding the crank effort in a reciprocating single acting, single cylinder petrol

engine.

8. The inertia of the connecting rod can be replaced by two masses concentrated at two points and

connected rigidly together. How to determine the two masses so that it is dynamically equivalent to

the connecting rod ?  Show this.

9. Given acceleration image of a link. Explain how dynamical equivalent system can be used to

determine the direction of inertia force on it.

10. Describe the graphical and analytical method of finding the inertia torque on the crankshaft of a

horizontal reciprocating engine.

11. Derive an expression for the correction torque to be applied to a crankshaft if the connecting rod of

a reciprocating engine is replaced by two lumped masses at the piston pin and the crank pin

respectively.

OBJECTIVE TYPE QUESTIONS

1. When the crank is at the inner dead centre, in a horizontal reciprocating steam engine, then the velocity

of the piston will be

(a) zero (b) minimum (c) maximum
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2. The acceleration of the piston in a reciprocating steam engine is given by

(a)
sin 2

. sinr
n

θ ω θ +   (b)
cos 2

. cosr
n

θ ω θ +  

(c)
2 sin 2
. sinr

n

θ ω θ +   (d)
2 cos 2
. cosr

n

θ ω θ +  

where ω = Angular velocity of the crank,

r = Radius of the crank,

θ = Angle turned by the crank from inner dead centre, and

n = Ratio of length of connecting rod to crank radius.

3. A rigid body, under the action of external forces, can be replaced by two masses placed at a fixed

distance apart. The two masses form an equivalent dynamical system, if

(a) the sum of two masses is equal to the total mass of the body

(b) the centre of gravity of the two masses coincides with that of the body

(c) the sum of mass moment of inertia of the masses about their centre of gravity is equal to the  mass

moment of inertia of the body

(d) all of the above

4. The essential condition of placing the two masses, so that the system becomes dynamically equivalent

is

(a) l
1
 .l

2
 = k

G
2 (b) l

1
 .l

2
 = k

G
(c) l

1
  = k

G
(d) l

2
 = k

G

where l
1
 and l

2
  = Distance of two masses from the centre of gravity of the body, and

k
G
 = Radius of gyration of the body.

5. In an engine, the work done by inertia forces in a cycle is

(a) positive (b) zero (c) negative (d) none of these

ANSWERS

1. (a) 2. (d) 3. (d) 4. (a) 5. (a)

GO To FIRST
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Friction Effects: Screw jack, friction between pivot and collars, single, multi-plate 

and cone clutches, anti friction bearing, film friction, friction circle, friction axis.  

 

Flexible Mechanical Elements: Belt, rope and chain drives, initial tension, effect 

of centrifugal tension on power transmission, maximum power transmission 

capacity, belt creep and slip. 
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Friction

10
Features (Main)

1. Introduction.

2. Types of Friction.

4. Friction Between Lubricated

Surfaces.

 5. Limiting Friction.

8. Laws of Solid Friction.

9. Laws of Fluid Friction.

10. Coefficient of Friction.

11. Limiting Angle of Friction.

12. Angle of Repose.

14. Friction of a Body Lying on

a Rough Inclined Plane.

15.  Efficiency of Inclined Plane.

16. Screw Friction.

17. Screw Jack.

18. Torque Required to Lift the

Load by a Screw Jack.

20. Efficiency of a Screw Jack.

21. Maximum Efficiency of a

Screw Jack.

22. Over Hauling and Self

Locking Screws.

23. Efficiency of Self Locking

Screws.

24. Friction of a V-thread.

25. Friction in Journal Bearing-

Friction Circle.

26. Friction of Pivot and Collar

Bearing.

27. Flat Pivot Bearing.

28. Conical Pivot Bearing.

29. Trapezoidal or Truncated

Conical Pivot Bearing.

30. Flat Collar Bearing.

31. Friction Clutches.

32. Single Disc or Plate Clutch.

33. Multiple Disc Clutch.

34. Cone Clutch.

35. Centrifugal Clutches.

10.1. Introduction

It has been established since long, that the surfaces

of the bodies are never perfectly smooth. When, even a very

smooth surface is viewed under a microscope, it is found to

have roughness and irregularities, which may not be detected

by an ordinary touch. If a block of one substance is placed

over the level surface of the same or of different material, a

certain degree of interlocking of the minutely projecting par-

ticles takes place. This does not involve any force, so long

as the block does not move or tends to move. But whenever

one block moves or tends to move tangentially with respect

to the surface, on which it rests, the interlocking property of

the projecting particles opposes the motion. This opposing

force, which acts in the opposite direction of the movement

of the upper block, is called the force of friction or simply

friction. It thus follows, that at every joint in a machine, force

of friction arises due to the relative motion between two parts

and hence some energy is wasted in overcoming the friction.

Though the friction is considered undesirable, yet it plays an

important role both in nature and in engineering e.g. walk-

ing on a road, motion of locomotive on rails, transmission of

power by belts, gears etc. The friction between the wheels

and the road is essential for the car to move forward.

10.2. Types of Friction

In general, the friction is of the following two types :

CONTENTSCONTENTS

CONTENTSCONTENTS



270  �   Theory of Machines

2.  Pitch. It is the distance from a point of a screw to a corresponding point on the next thread,

measured parallel to the axis of the screw.

3.  Lead. It is the distance, a screw thread advances axially in one turn.

4.  Depth of thread. It is the distance between the top and bottom surfaces of a thread (also

known as crest and root of a thread).

5.  Single-threaded screw. If the lead of a screw is equal to its pitch, it is known as single

threaded screw.

6.  Multi-threaded screw. If more than one thread is cut in one lead distance of a screw, it is

known as multi-threaded screw e.g. in a double threaded screw, two threads are cut in one lead length.

In such cases, all the threads run independently along the length of the rod. Mathematically,

                          Lead = Pitch × Number of threads

7. Helix angle. It is the slope or inclination of the thread with

the horizontal. Mathematically,

                        
Lead of screw

tan
Circumference of screw

α =

                = p/πd           ...(In single-threaded screw)

                 = n.p/πd          ...(In multi-threaded screw)

where             α = Helix angle,

            p = Pitch of the screw,

                                d = Mean diameter of the screw, and

                               n  = Number of threads in one lead.

10.17. Screw Jack

The screw jack is a device, for lifting heavy loads, by apply-

ing a comparatively smaller effort at its handle. The principle, on

which a screw jack works is similar to that of an inclined plane.

(a) Screw jack. (b) Thrust collar.

Fig. 10.11

Screw Jack.
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Fig. 10.11 (a) shows a common form of a screw jack, which consists of a square threaded rod

(also called screw rod or simply screw) which fits into the inner threads of the nut. The load, to be

raised or lowered, is placed on the head of the square threaded rod which is rotated by the application

of an effort at the end of the lever for lifting or lowering the load.

10.18. Torque Required to Lift the Load by a Screw Jack

If one complete turn of a screw thread by imagined to be unwound, from the body of the

screw and developed, it will form an inclined plane as shown in Fig. 10.12 (a).

 (a) Development of a screw. (b) Forces acting on the screw.

Fig. 10.12

Let p = Pitch of the screw,

d = Mean diameter of the screw,

α = Helix angle,

P = Effort applied at the circumference of the screw to lift the

load,

W = Load to be lifted, and

µ = Coefficient of friction, between the screw and nut = tan φ,

where φ is the friction angle.

From the geometry of the Fig. 10.12 (a), we find that

tan α = p/π d

Since the principle on which a screw jack works is similar to that of an inclined plane, there-

fore the force applied on the lever of a screw jack may be considered to be horizontal as shown in Fig.

10.12 (b).

Since the load is being lifted, therefore the force of friction (F = µ.R
N

) will act downwards.

All the forces acting on the screw are shown in Fig. 10.12 (b).

Resolving the forces along the plane,

P cos α = W sin α + F = W sin α + µ.R
N

...(i)

and resolving the forces perpendicular to the plane,

R
N

= P sin α + W cos α ...(ii)

Substituting this value of R
N

 in equation (i),

P cos α = W sin α + µ (P sin α + W  cos α)

= W sin α + µ P sin α + µ W  cos α
or P cos α – µ P sin α = W sin α + µ W cos α
or P (cos α – µ sin α) = W (sin α + µ cos α)
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∴
sin cos

cos sin
P W

α + µ α= ×
α − µ α

Substituting the value of µ = tan φ in the above equation, we get

sin tan cos

cos tan sin
P W

α + φ α= ×
α − φ α

Multiplying the numerator and denominator by cos φ,

sin cos sin cos sin ( )

cos cos sin sin cos ( )
P W W

α φ + φ α α + φ= × = ×
α φ − α φ α + φ

tan ( )W= α + φ
∴  Torque required to overcome friction between the screw and nut,

1
tan ( )

2 2

d d
T P W= × = α + φ

When the axial load is taken up by a thrust collar or a flat surface, as shown in Fig. 10.11 (b),

so that the load does not rotate with the screw, then the torque required to overcome friction at the

collar,

1 2
2 1 1

. . .
2

R R
T W W R

+ = µ = µ  
where R

1
 and R

2
= Outside and inside radii of the collar,

R = Mean radius of the collar, and

µ
1

= Coefficient of friction for the collar.

∴  Total torque required to overcome friction (i.e. to rotate the screw),

 1 2 1
. .

2

d
T T T P W R= + = × + µ

If an effort P
1
 is applied at the end of a lever of arm length l, then the total torque required to

overcome friction must be equal to the torque applied at the end of the lever, i.e.

1
.

2

d
T P P l= × =

Notes : 1. When the *nominal diameter (d
0
) and the **core diameter (d

c
) of the screw thread is given, then the

mean diameter of the screw,

                                               
0

02 2 2

c
c

d d p p
d d d

+
= = − = +

2. Since the mechanical advantage is the ratio of load lifted (W ) to the effort applied (P
1
) at the end of

the lever, therefore mechanical advantage,

                                           
1

2
. .

.

W W l
M A

P p d

×= = ... 1

.

2

P d
P

l

 =  
�

                                                    
2 2

tan ( ) .tan ( )

W l l

W d d

×= =
α + φ α + φ

Example 10.3. An electric motor driven power screw moves a nut in a horizontal plane

against a force of 75 kN at a speed of 300 mm/min. The screw has a single square thread of 6 mm

pitch on a major diameter of 40 mm. The coefficient of friction at the screw threads is 0.1. Estimate

power of the motor.

* The nominal diameter of a screw thread is also known as outside diameter or major diameter.

** The core diameter of a screw thread is also known as inner diameter or root diameter or minor diameter.
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Solution. Given : W = 75 kN = 75 × 103 N ; v = 300 mm/min ; p = 6 mm ; d
0
 = 40 mm ;

µ = tan φ = 0.1

We know that mean diameter of the screw,

d = d
0
 – p/2 = 40 – 6/2 = 37 mm = 0.037 m

and                                     
6

tan 0.0516
37

p

d
α = = =

π π×

∴  Force required at the circumference of the screw,

                                            
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

                                                
3 30.0516 0.1

75 10 11.43 10 N
1 0.0516 0.1

+ = × = × − × 

and torque required to overcome friction,

T = P × d/2 = 11.43 × 103 × 0.037/2 = 211.45 N-m

We know that speed of the screw,

Speed of the nut 300
50 r.p.m.

Pitch of the screw 6
N = = =

and angular speed,        ω = 2 π × 50/60 = 5.24 rad/s

∴  Power of the motor = T.ω = 211.45 × 5.24 = 1108 W = 1.108 kW Ans.

Example 10.4. A turnbuckle, with right

and left hand single start threads, is used to couple

two wagons. Its thread pitch is 12 mm and mean

diameter 40 mm. The coefficient of friction between

the nut and screw is 0.16.

1. Determine the work done in drawing the

wagons together a distance of 240 mm, against a

steady load of 2500 N.

2. If the load increases from 2500 N to 6000

N over the distance of 240 mm, what is the work to

be done?

Solution. Given : p = 12 mm ; d = 40 mm ;

µ = tan φ = 0.16 ; W = 2500 N

1.  Work done in drawing the wagons together against a steady load of 2500 N

We know that               
12

tan 0.0955
40

p

d
α = = =

π π×
∴  Effort required at the circumference of the screw,

  
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

Turnbuckle.
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0.0955 0.16

2500 648.7 N
1 0.0955 0.16

+ = = − × 
and torque required to overcome friction between the screw and nut,

                                            / 2 648.7 40 / 2 12 947 N-mm 12.974 N-mT P d= × = × = =
A little consideration will show that for one complete revolution of the screwed rod, the

wagons are drawn together through a distance equal to 2 p, i.e. 2 × 12 = 24 mm. Therefore in order to

draw the wagons together through a distance of 240 mm, the number of turns required are given by

N = 240/24 = 10

∴ Work done = T × 2 π N = 12.974 × 2 π × 10 = 815.36  N-m  Ans.

2.  Work done in drawing the wagons together when load increases from 2500 N to 6000 N

For an increase in load from 2500 N to 6000 N,

                              
815.3(6000 2500)

Work done = 114.4 N-m
2500

− = Ans.

Example 10.5. A 150 mm diameter valve, against which a steam pressure of 2 MN/m2 is

acting, is closed by means of a square threaded screw 50 mm in external diameter with 6 mm pitch.

If the coefficient of friction is 0.12 ; find the torque required to turn the handle.

Solution. Given : D = 150 mm = 0.15 mm = 0.15 m ;  Ps = 2 MN/m2 = 2 × 106 N/m2 ;

d0 = 50 mm ; p = 6 mm ; µ = tan φ = 0.12

We know that load on the valve,

W = Pressure × Area = 
2 6 2

S
2 10 (0.15) N

4 4
p D

π π× = × ×

= 35 400 N

Mean diameter of the screw,

d = d
0
 – p/2 = 50 – 6/2 = 47 mm = 0.047 m

∴                                   
6

tan 0.0406
47

p

d
α = = =

π π×
We know that force required to turn the handle,

                                            
tan tan

tan ( )
1 tan .tan

P W W
α + φ = α + φ =  − α φ 

                                                
0.0406 12

35400 5713 N
1 0.0406 0.12

+ = = − × 
∴   Torque required to turn the handle,

T = P × d/2 = 5713 × 0.047/2 = 134.2 N-m  Ans.

Example 10.6. A square threaded bolt of root diameter 22.5 mm and pitch 5 mm is tightened

by screwing a nut whose mean diameter of bearing surface is 50 mm. If coefficient of friction for nut

and bolt is 0.1 and for nut and bearing surface 0.16, find the force required at the end of a spanner

500 mm long when the load on the bolt is 10 kN.

Solution. Given : d
c
 = 22.5 mm ; p = 5 mm ;  D = 50 mm or R = 25 mm ; µ = tan φ = 0.1 ;

µ
1
 = 0.16 ; l = 500 mm ; W  = 10 kN = 10 × 103 N

Let P
1

= Force required at the end of a spanner in newtons.
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We know that mean diameter of the screw,

                                            / 2 22.5 5 / 2 25 mm
c

d d p= + = + =

∴                                  
5

tan 0.0636
25

p

d
α = = =

π π×

Force requred at the circumference of the screw,

                                            
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

                                                
3 0.0636 0.1

10 10 1646 N
1 0.06363 0.1

+ = × = − × 
We know that total torque required,

                                            
3

1

25
. . . 1646 0.16 10 10 25

2 2

d
T P W R= × + µ = × + × × ×

 60575 N - mm= ..(i)

We also know that torque required at the end of a spanner,

T = P
1
 × l = P

1
 × 500 = 500 P

1
 N-mm ...(ii)

Equating equations (i) and (ii),

P
1

= 60575/500 = 121.15 N  Ans.

Example 10.7. A vertical screw with single start square threads 50 mm mean diameter and

12.5 mm pitch is raised against a load of 10 kN by means of a hand wheel, the boss of which is

threaded to act as a nut. The axial load is taken up by a thrust collar which supports the wheel boss

and has a mean diameter of 60 mm. If the coefficient of friction is 0.15 for the screw and 0.18 for the

collar and the tangential force applied by each hand to the wheel is 100 N ; find suitable diameter of

the hand wheel.

Solution. Given : d = 50 mm ; p = 12.5 mm ; W = 10 kN = 10 × 103 N ; D = 60 mm or

R = 30 mm ; µ = tan φ = 0.15 ; µ
1
 = 0.18 ; P

1
 = 100 N

We know that   
12.5

tan 0.08
50

p

d
α = = =

π π×
and the tangential force required at the circumference of the screw,

                             
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

                                    
3 0.08 0.15

10 10 2328 N
1 0.08 0.15

+ = × = − × 
Also we know that the total torque required to turn the hand wheel,

                               
3

1

50
. . 2328 0.18 10 10 30

2 2

d
T P W R= × + µ = × + × × ×

                                    112200 N-mm= ...(i)

Let D
1
 = Diameter of the hand wheel in mm.

We know that the torque applied to the hand wheel,

                                
1 1

1 1
2 2 100 100 N-mm

2 2

D D
T P D= × = × × = ...(ii)
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Equating equations (i) and (ii),

                                D
1
 = 112 200/100 = 1222 mm = 1.222 m Ans.

Example 10.8. The cutter of a broaching machine is pulled by square threaded screw of 55

mm external diameter and 10 mm pitch. The operating nut takes the axial load of 400 N on a flat

surface of 60 mm internal diameter and 90 mm external diameter. If the coefficient of firction is 0.15

for all contact surfaces on the nut, determine the power required to rotate the operating nut, when

the cutting speed is 6 m/min.

Solution. Given : d
0
 = 55 mm ; p = 10 mm = 0.01 m ; W  = 400 N ; D

2
 = 60 mm   or

R
2
 = 30 mm ; D

1
 = 90 mm or R

1
 = 45 mm ; µ = tan φ = µ

1
 = 0.15

We know that mean diameter of the screw,

                                  d = d
0
 – p/2 = 55 – 10/2 = 50 mm

∴                       
10

tan 0.0637
50

p

d
α = = =

π π×
and force required at the circumference of the screw,

                                
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

                                    
0.0637 0.15

400 86.4 N
1 0.0637 0.15

+ = = − × 
We know that mean radius of the flat surface,

                                
1 2 45 30

37.5 mm
2 2

R R
R

+ += = =

∴  Total torque required,

                                            1

50
. . 86.4 0.15 400 37.5 N-mm

2 2

d
T P W R= × + µ = × + × ×

              4410 N-mm 4.41 N-m= = ...(∵ µ
1
 = µ)

Since the cutting speed is 6 m/min, therefore speed of the screw,

            
Cutting speed 6

600 r.p.m.
Pitch 0.01

N = = =

and                angular speed, ω = 2 π × 600/60 = 62.84 rad/s

We know that power required to operate the nut

            . 4.41 62.84 277 W 0.277 kWT= ω = × = = Ans.

10.19. Torque Required to Lower the Load by a Screw Jack

We have discussed in Art. 10.18, that the principle on which the screw jack works is similar

to that of an inclined plane. If one complete turn of a screw thread be imagined to be unwound from

the body of the screw and developed, it will form an inclined plane as shown in Fig. 10.13 (a).

Let p = Pitch of the screw,

d = Mean diameter of the screw,

α = Helix angle,

P = Effort applied at the circumference of the screw to lower the

load,
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W = Weight to be lowered, and

µ = Coefficient of friction between the screw and nut = tan φ,

where φ is the friction angle.

(a) (b)

Fig. 10.13

From the geometry of the figure, we find that

tan α = p/πd

Since the load is being lowered, therefore the force of friction (F = µ.R
N

) will act upwards.

All the forces acting on the screw are shown in Fig. 10.13  (b).

Resolving the forces along the plane,

P cos α = F – W  sin α = µ.R
N

 – W  sin α ...(i)

and resolving the forces perpendicular to the plane,

R
N

= W cos α – P sin α ...(ii)

Substituting this value of R
N

 in equation (i),

P cos α = µ (W cos α – P sin α) – W sin α
= µ.W  cos α – µ.P sin α – W  sin α

or P cos α + µ.P sin α = µ.W cos α – W sin α
or P (cos α + µ sin α) = W (µ cos α – sin α)

∴                                        
( cos sin )

(cos sin )
P W

µ α − α= ×
α + µ α

Substituting the value of µ = tan φ in the above equation, we get

                                           
(tan cos sin )

(cos tan sin )
P W

φ α − α= ×
α + φ α

Multiplying the numerator and denominator by cos φ,

                                           
(sin cos sin cos ) sin ( )

(cos cos sin sin ) cos ( )
P W W

φ α − α φ φ− α= × = ×
α φ + φ α φ− α

                                              tan ( )W= φ − α
∴ Torque required to overcome friction between the screw and nut,

tan ( )
2 2

d d
T P W= × = φ − α

Note : When α > φ, then P = tan (α – φ).

Example 10.9. The  mean diameter of a square threaded screw jack is 50 mm. The pitch of

the thread is 10 mm. The coefficient of friction is 0.15. What force must be applied at the end of a

0.7 m long lever, which is perpendicular to the longitudinal axis of the screw to raise a load of 20 kN

and to lower it?
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Solution. Given : d = 50 mm = 0.05 m ; p = 10 mm ; µ = tan φ = 0.15 ; l = 0.7 m ; W = 20 kN

= 20 × 103 N

We know that        
10

tan 0.0637
50

p

d
α = = =

π π×
Let P

1
= Force required at the end of the lever.

Force required to raise the load

We know that force required at the circumference of the screw,

                                           
tan tan

tan ( )
1 tan .tan

P W W
α + φ = α + φ =  − α φ 

                                               
3 0.0637 0.15

20 10 4314 N
1 0.0637 0.15

+ = × = − × 
Now the force required at the end of the lever may be found out by the relation,

P
1
 × l = P × d/2

∴ 1

4314 0.05
154 N

2 2 0.7

P d
P

l

× ×= = =
×

Ans.

Force required to lower the load

We know that the force required at the circumference of the screw,

tan tan
tan ( )

1 tan .tan
P W W

φ − α = φ − α =  + φ α 

3 0.15 0.0637
20 10 1710 N

1 0.15 0.0637

− = × = + × 
Now the force required at the end of the lever may be found out by the relation,

                                     
1 1

1710 0.05
or 61 N

2 2 2 0.7

d P d
P l P P

l

× ×× = × = = =
×

Ans.

10.20. Efficiency of a Screw Jack

The efficiency of a screw jack may be defined as the ratio between the ideal effort (i.e. the

effort required to move the load, neglecting friction) to the actual effort (i.e. the effort required to

move the load taking friction into account).

We know that the effort required to lift the load (W ) when friction is taken into account,

P = W tan (α + φ) ...(i)

where α = Helix angle,

φ = Angle of friction, and

µ = Coefficient of friction, between the screw and nut = tan φ.
If there would have been no friction between the screw and the nut, then φ will be equal to

zero. The value of effort P
0
 necessary to raise the load, will then be given by the equation,

P
0

= W tan α (i.e. Putting φ = 0 in equation (i)]

                       
0Ideal effort tan tan

Efficiency,
Actual effort tan ( ) tan ( )

P W

P W

α α∴ η = = = =
α + φ α + φ

which shows that the efficiency of a screw jack, is independent of the load raised.
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In the above expression for efficiency, only the screw friction is considered. However, if the

screw friction and the collar friction is taken into account, then

∴                   
Torque required to move the load, neglecting friction

Torque required to move the load, including screw and collar friction
η =

                         
0 0

1

/ 2

/ 2 . .

T P d

T P d W R

×
= =

× + µ
Note: The efficiency of the screw jack may also be defined as the ratio of mechanical advantage to the

velocity ratio.

We know that mechanical advantage,

                  
1

2 2 2
. .

tan ( ) tan ( )

W W l W l l
M A

P P d W d d

× ×= = = =
× α + φ α + φ ...(Refer Art 10.17)

and velocity ratio,   
1

Distance moved by the effort ( ), in one revolution
. .

Distance moved by the load ( ), in one revolution

P
V R

W
=

                           
2 2 2

tan tan

l l l

p d d

π π= = =
α × π α × ...(� tan α = p/πd)

∴   Efficiency,  
. . 2 tan tan

. . tan ( ) 2 tan ( )

M A l d

V R d l

α× × αη = = × =
α + φ α + φ

10.21. Maximum Efficiency of a Screw Jack

We have seen in Art. 10.20 that the efficiency of a screw jack,

sin

tan sin cos ( )cos

sin ( )tan ( ) cos sin ( )

cos ( )

α
α α × α + φαη = = =

α + φα + θ α × α +φ
α + φ

...(i)

    
2 sin cos ( )

2 cos sin ( )

α × α + φ=
α × α + φ

...(Multiplying the numerator and denominator by 2)

sin (2 ) sin

sin (2 ) sin

α + φ − φ=
α + φ + φ ...(ii)

2 sin cos sin ( ) sin ( )
...

2 cos sin sin ( ) sin ( )

A B A B A B

A B A B A B

= + + − 
 = + − − 

�

The efficiency given by equation (ii) is maximum when sin (2α + φ) is maximum, i.e. when

sin (2α + φ) = 1    or   when 2α + φ = 90°

∴ 2α = 90º – φ    or    α = 45º – φ / 2

Substituting the value of 2 α in equation (ii), we have maximum efficiency,

                                     
sin (90º ) sin sin 90º sin 1 sin

sin (90º ) sin sin 90º sin 1 sinmax

− φ + φ − φ − φ − φη = = =
− φ + φ + φ + φ + φ

Example 10.10. The pitch of 50 mm mean diameter threaded screw of a screw jack is 12.5

mm.  The coefficient of friction between the screw and the nut is 0.13. Determine the torque required

on the screw to raise a load of 25 kN, assuming the load to rotate with the screw. Determine the ratio

of the torque required to raise the load to the torque required to lower the load and also the efficiency

of the machine.
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Solution. Given : d = 50 mm ; p = 12.5 mm ; µ = tan φ = 0.13 ; W = 25 kN = 25 × 103 N

We know that,         
12.5

tan 0.08
50

p

d
α = = =

π π×
and force required on the screw to raise the load,

                                      
tan tan

tan ( )
1 tan .tan

P W W
φ − α = α + φ =  + φ α 

                                          
3 0.08 0.13

25 10 5305 N
1 0.08 0.13

+ = × = − × 
Torque required on the screw

We know that the torque required on the screw to raise the load,

                                   T
1
 = P × d/2 = 5305 × 50/2 = 132 625 N-mm Ans.

Ratio of the torques required to raise and lower the load

We know that the force required on the screw to lower the load,

                                      
tan tan

tan ( )
1 tan .tan

P W W
φ − α = φ − α =  + φ α 

                                          
3 0.13 0.08

25 10 1237 N
1 0.13 0.08

+ = × = + × 
and torque required to lower the load

                                                T
2
 = P × d/2 = 1237 × 50/2 = 30 905 N-mm

∴   Ratio of the torques required,

                                        1 2
/ 132625 / 30925 4.3T T= = = Ans.

Efficiency of the machine

We know that the efficiency,

                                          
tan tan (1 tan .tan ) 0.08(1 0.08 0.13)

tan ( ) tan tan 0.08 0.13

α α − α φ − ×η = = =
α + φ α + φ +

                                          = 0.377 = 37.7%  Ans.

Example 10.11.  The mean diameter of the screw jack having pitch of 10 mm is 50 mm. A

load of 20 kN is lifted through a distance of 170 mm. Find the work done in lifting the load and

efficiency of the screw jack when

1.  the load rotates with the screw, and

2.  the load rests on the loose head which does not rotate with the screw.

The external and internal diameter of the bearing surface of the loose head are 60 mm and

10 mm respectively. The coefficient of friction for the screw as well as the bearing surface may be

taken as 0.08.

Solution.  Given : p = 10 mm ; d = 50 mm ; W  = 20 kN = 20 × 103 N ; D2 = 60 mm or

R2 = 30 mm ; D1 = 10 mm or R1 = 5 mm ; µ = tan φ = µ1 = 0.08

We know that          
10

tan 0.0637
50

p

d
α = = =

π π×
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∴   Force required at the circumference of the screw to lift the load,

tan tan
tan ( )

1 tan . tan
P W W

α + φ = α + φ =  − α φ 

3 0.0637 0.08
20 10 2890 N

1 0.0637 0.08

+ = × = − × 
and torque required to overcome friction at the screw,

                              / 2 2890 50 / 2 72250 N-mm 72.25 N-mT P d= × = × = =
Since the load is lifted through a vertical distance of 170 mm and the distance moved by the

screw in one rotation is 10 mm (equal to pitch), therefore number of rotations made by the screw,

N = 170/10 = 17

1.  When the load rotates with the screw

We know that work done in lifting the load

                                    2 72.25 2 17 7718 N-mT N= × π = × π × = Ans.

and efficiency of the screw jack,

                                
tan tan (1 tan .tan )

tan ( ) tan tan

α α − α φη = =
α + φ α + α

                                    
0.0637(1 0.0637 0.08)

0.441 or 44.1%
0.0637 0.08

− ×= =
+

Ans.

2.  When the load does not rotate with the screw

We know that mean radius of the bearing surface,

                              
1 2 30 5

17.5 mm
2 2

R R
R

+ +
= = =

and torque required to overcome friction at the screw and the collar,

1
3

/ 2 . .

2890 50 / 2 0.08 20 10 17.5 100 250 N-mm

= 100.25 N-m

T P d W R= × + µ
= × + × × × =

∴  Work done by the torque in lifting the load

                                   2 100.25 2 17 10 710 N-mT N= × π = × π × = Ans.

We know that the torque required to lift the load, neglecting friction,

0 0
/ 2 tan / 2T P d W d= × = α × ...(�P

0
 = W tan α)

= 20 × 103 × 0.0637 × 50/2 = 31 850 N-mm = 31.85 N-m

∴   Efficiency of the screw jack,

0
/ 31.85 /100.25 0.318 or 31.8%T Tη = = = Ans.

10.22. Over Hauling and Self Locking Screws

We have seen in Art. 10.20 that the effort required at the circumference of the screw to lower

the load is

P = W tan (φ – α)
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and the torque required to lower the load

tan ( )
2 2

d d
T P W= × = φ− α

In the above expression, if φ < α, then torque required to lower the load will be negative. In

other words, the load will start moving downward without the application of any torque. Such a

condition is known as over haulding of screws. If however, φ > α, the torque required to lower the

load will positive, indicating that an effort is applied to lower the load. Such a screw is known as self

locking screw. In other words, a screw will be self locking if the friction angle is greater than helix

angle or coefficient of friction is greater than tangent of helix angle i.e. µ or tan φ > tan α.

10.23. Efficiency of Self Locking Screws

We know that efficiency of the screw,

tan

tan ( )

αη =
α + φ

and for self locking screws,  or .φ ≥ α α ≤ φ

∴  Efficiency of self locking screws,

                                            

2tan tan tan (1 tan )

tan ( ) tan 2 2 tan

φ φ φ − φη ≤ ≤ ≤
φ + φ φ φ

 
21 tan

2 2

φ≤ − 2

2 tan
tan 2...

1 tan

φ φ = − φ 
�

From this expression we see that efficiency of self locking screws is less than 
1

2
 or 50%. If

the efficiency is more than 50%, then the screw is said to be overhauling,

Note : It can also be proved as follows :

Let W = Load to be lifted, and

h = Distance through which the load is lifted.

∴ Output = W.h

and                                           Input = 
Output .W h

=
η η

∴  Work lost in over coming friction.

                                                    
1.

1Input Output . .
W h

W h W h
 −= − = − =  ηη  

For self locking,,  
1

1. .W h W h
 − ≤ η 

∴                                       
1 1

1 1 or or 50%
2

− ≤ η ≤
η

Example 10.12. A load of 10 kN is raised by means of a screw jack, having a square threaded

screw of 12 mm pitch and of mean diameter 50 mm. If a force of 100 N is applied at the end of a lever

to raise the load, what should be the length of the lever used? Take coefficient of friction = 0.15.

What is the mechanical advantage obtained? State whether the screw is self locking.

Solution.  Given : W = 10 kN = 10 × 103 N ; p = 12 mm ; d = 50 mm ; P
1
 = 100 N ;

µ = tan φ = 0.15

Length of the lever

Let l = Length of the lever.
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We know that       
12

tan 0.0764
50

p

d
α = = =

π π×
∴  Effort required at the circumference of the screw to raise the load,

                                 
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

                                     
3 0.0764 0.15

10 10 2290
1 0.0764 0.15

+ = × = − × 
N

and torque required to overcome friction,

                                    T = P × d/2 = 2290 × 50/2 = 57 250 N-mm ...(i)

We know that torque applied at the end of the lever,

                                   T = P
1
 × l = 100 × l N-mm ...(ii)

Equating equations (i) and (ii)

                                     l = 57 250/100 = 572.5 mm  Ans.

Mechanical advantage

We know that mechanical advantage,

                             
3

1

10 10
. . 100

100

W
M A

P

×= = = Ans.

Self locking of the screw

We know that efficiency of the screw jack,

                                   
tan tan (1 tan .tan )

tan ( ) tan tan

α α − α φη = =
α + φ α + φ

                                       
0.0764(1 0.0764 0.15) 0.0755

0.3335 or 33.35%
0.0764 0.15 0.2264

− ×= = =
+

Since the efficiency of the screw jack is less than 50%, therefore the screw is a self locking

screw. Ans.

10.24. Friction of a V-thread

We have seen Art. 10.18 that the normal reaction in case of a square threaded screw is

                                 RN = W cos α, where α = Helix angle.

But in case of  V-thread (or acme or trapezoidal threads), the normal

reaction between the screw and nut is increased because the axial component of

this normal reaction must be equal to the axial load W , as shown in Fig. 10.14.

Let                             2β = Angle of the V-thread, and

                                   β  = Semi-angle of the V-thread.

∴                             N cos

W
R =

β

and                frictional force, N 1
. .

cos

W
F R W= µ = µ × = µ

β

where                                      1
,

cos

µ = µ
β  known as virtual coefficient of friction.

Fig. 10.14. V-thread.
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3 0.064 0.113

10 10 1783 N
1 0.064 0.113

+ = × = − × 
We know that total torque transmitted,

                          
3

2

25
. . 1783 0.16 10 10 25 N-mm

2 2

d
T P W R= × + µ = × + × × ×

 62 300 N-mm 62.3 N-m= = ...(i)

Let P
1
 = Force required at the end of a spanner.

∴   Torque required at the end of a spanner,

 T = P
1
 × l = P

1
 × 0.5 = 0.5 P

1
 N-m ...(ii)

Equating equations (i) and (ii),

P
1
 = 62.3/0.5 = 124.6 N  Ans.

10.25. Friction in Journal Bearing-Friction Circle

A journal bearing forms a turning pair as shown in Fig. 10.15 (a). The fixed outer element of

a turning pair is called a bearing and that portion of the inner element (i.e. shaft) which fits in the

bearing is called a journal. The journal is slightly less in diameter than the bearing, in order to permit

the free movement of the journal in a bearing.

                    (a)         (b)

Fig. 10.15. Friction in journal bearing.

When the bearing is not lubricated (or the journal is stationary), then there is a line contact

between the two elements as shown in Fig. 10.15 (a). The load W  on the journal and normal reaction

R
N

 (equal to W ) of the bearing acts through the centre. The reaction R
N

 acts vertically upwards at

point A . This point A  is known as seat or point of pressure.

Now consider a shaft rotating inside a bearing in clockwise direction as shown in Fig. 10.15
(b). The lubricant between the journal and bearing forms a thin layer which gives rise to a greasy

friction.Therefore, the reaction R does not act vertically upward, but acts at another point of pressure

B. This is due to the fact that when shaft rotates, a frictional force F = µ R
N

 acts at  the circumference

of the shaft which has a tendency to rotate the shaft in opposite direction of motion and this shifts the

point A to point B.

In order that the rotation may be maintained, there must be a couple rotating the shaft.

Let φ = Angle between R (resultant of F and R
N

) and R
N

,

µ = Coefficient of friction between the journal and bearing,

T = Frictional torque in N-m, and

r = Radius of the shaft in metres.
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For uniform motion, the resultant force acting on the shaft must be zero and the resultant

turning moment on the shaft must be zero. In other words,

R = W , and T = W × OC = W × OB sin φ = W.r sin φ
Since φ is very small, therefore substituting sin φ = tan φ
∴ T = W.r tan φ = µ.W.r ...(∵ µ = tan φ)

If the shaft rotates with angular velocity ω rad/s, then power wasted in friction,

P = T.ω = T × 2πN/60 watts

where N = Speed of the shaft in r.p.m.

Notes : 1. If a circle is drawn with centre O and radius OC = r sin φ, then this circle is called the friction circle

of a bearing.

2. The force R exerted by one element of a turning pair on the other element acts along a tangent to the

friction circle.

Example 10.15. A 60 mm diameter shaft running in a bearing carries a load of 2000 N. If

the coefficient of friction between the shaft and bearing is 0.03, find the power transmitted when it

runs at 1440 r.p.m.

Solution.  Given : d = 60 mm or r = 30 mm = 0.03 m ; W = 2000 N ; µ = 0.03 ; N = 1440 r.p.m.

or ω = 2π × 1440/60 = 150.8 rad/s

We know that torque transmitted,

T = µ.W.r = 0.03 × 2000 × 0.03 = 1.8 N-m

∴  Power transmitted, P = T.ω = 1.8 × 150.8 = 271.4 W Ans.

10.26. Friction of Pivot and Collar Bearing

The rotating shafts are frequently subjected to axial thrust. The bearing surfaces such as pivot

and collar bearings are used to take this axial thrust of the rotating shaft. The propeller shafts of ships, the
shafts of steam turbines, and vertical machine shafts are examples of shafts which carry an axial thrust.

The bearing surfaces placed at the end of a shaft to take the axial thrust are known as

pivots. The pivot may have a flat surface or conical surface as shown in Fig. 10.16 (a) and (b)

respectively. When the cone is truncated, it is then known as truncated or trapezoidal pivot as

shown in Fig. 10.16 (c).

The collar may have flat bearing surface or conical bearing surface, but the flat surface is

most commonly used. There may be a single collar, as shown in Fig. 10.16 (d) or several collars along

the length of a shaft, as shown in Fig. 10.16 (e) in order to reduce the intensity of pressure.

(a) Flat pivot. (b) Conical pivot. (c) Truncated pivot. (d) Single flat (e) Multiple flat

collar. collar.

Fig. 10.16. Pivot and collar bearings.

In modern practice, ball and roller thrust bearings are used when power is being transmitted

and when thrusts are large as in case of propeller shafts of ships.
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Fig. 10.17. Flat pivot or footstep

bearing.

A little consideration will show that in a new bear-

ing, the contact between the shaft and bearing may be good

over the whole surface. In other words, we can say that the

pressure over the rubbing surfaces is uniformly distributed.

But when the bearing becomes old, all parts of the rubbing

surface will not move with the same velocity, because the

velocity of rubbing surface increases with the distance from

the axis of the bearing. This means that wear may be different

at different radii and this causes to alter the distribution of

pressure. Hence, in the study of friction of bearings, it is as-

sumed that

1.  The pressure is uniformly distributed throughout the bearing surface, and

2.  The wear is uniform throughout the bearing surface.

10.27. Flat Pivot Bearing

When a vertical shaft rotates in a flat pivot bearing

(known as foot step bearing), as shown in Fig. 10.17, the

sliding friction will be along the surface of contact between

the shaft and the bearing.

Let W = Load transmitted over the bearing surface,

R = Radius of bearing surface,

p = Intensity of pressure per unit area of bear-

ing surface between rubbing surfaces, and

µ = Coefficient of friction.

We will consider the following two cases :

1.  When there is a uniform pressure ; and

2.  When there is a uniform wear.

1.  Considering unifrom pressure

When the pressure is uniformly distributed over the bearing area, then

                                              2

W
p

R
=

π
Consider a ring of radius r and thickness dr of the bearing area.

∴  Area of bearing surface,   A = 2πr.dr

Load transmitted to the ring,

                                                       δW   = p × A =  p × 2 π r.dr ...(i)

Frictional resistance to sliding on the ring acting tangentially at radius r,

F
r 
 = µ.δW  = µ p × 2π r.dr = 2π µ.p.r.dr

∴  Frictional torque on the ring,

     T
r
 = F

r
 × r = 2π µ p r.dr × r = 2 π µ p r2 dr ...(ii)

Integrating this equation within the limits from 0 to R for the total frictional torque on the

pivot bearing.

Collar bearing.
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∴   Total frictional torque,  
2 2

0 0

2 2

R R

T p r dr p r dr= πµ = πµ∫ ∫

                                        

33
3

0

2
2 2 . .

3 33

R
Rr

p p p R
 = πµ = πµ × = × πµ  

                                        
3

2

2 2
. .

3 3

W
R W R

R
= × πµ × × = × µ

π 2
...

W
p

R

 = π 
�

When the shaft rotates at ω rad/s, then power lost in friction,

P = T.ω = T × 2π N/60 ...( 2 / 60)Nω = π�

where N = Speed of shaft in r.p.m.

2.  Considering uniform wear

We have already discussed that the rate of wear depends upon the intensity of pressure (p) and

the velocity of rubbing surfaces (v). It is assumed that the rate of wear is proportional to the product

of intensity of pressure and the velocity of rubbing surfaces (i.e.  p.v..). Since the velocity of rubbing

surfaces increases with the distance (i.e. radius r) from the axis of the bearing, therefore for uniform

wear

p.r = C (a constant)     or     p = C / r

and the load transmitted to the ring,

δW = p × 2πr.dr ...[From equation (i)]

    2 . 2 .
C

r dr C dr
r

= × π = π

∴ Total load transmitted to the bearing

[ ]0

0

2 . 2 2 . or
2

R
R W

W C dr C C R Cr
R

= π = π = π =
π∫

We know that frictional torque acting on the ring,

 
2 2

2 2
r

C
T p r dr r dr

r
= πµ = πµ × × ...

C
p

r

 =  
�

= 2π µ.C.r  dr ...(iii)

∴   Total frictional torque on the bearing,

2

0 0

2 . . . 2 .
2

RR
r

T C r dr C
 = π µ = πµ   ∫

2
22 . . .

2

R
C C R= πµ × = πµ

2 1
. .

2 2

W
R W R

R
= πµ × × = × µ

π
...

2

W
C

R

 = π 
�

Example 10.16. A vertical shaft 150 mm in diameter rotating at 100 r.p.m. rests on a flat end

footstep bearing. The shaft carries a vertical load of 20 kN. Assuming uniform pressure distribution

and coefficient of friction equal to 0.05, estimate power lost in friction.

Solution. Given : D = 150 mm or R = 75 mm = 0.075 m ; N = 100 r.p.m or ω = 2 π × 100/60

= 10.47 rad/s ; W = 20 kN = 20 × 103 N ; µ = 0.05
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* The vertical load acting on the ring is also given by

                                   δW  = Vertical component of p
n
 × Area of the ring

                                         =p
n
 sin α × 2πr.dr.cosec α = p

n
 × 2πr.dr

Fig. 10.18.

Conical pivot bearing.

We know that for uniform pressure distribution, the total frictional torque,

                                  
32 2

. . 0.05 20 10 0.075 50 N-m
3 3

T W R= × µ = × × × × =

∴   Power lost in friction,

                                 . 50 10.47 523.5 WP T= ω = × = Ans.

10.28. Conical Pivot Bearing

The conical pivot bearing supporting a shaft carrying a load W  is shown in Fig. 10.18.

Let                                P
n

= Intensity of pressure normal to

the cone,

α = Semi angle of the cone,

µ = Coefficient of friction

between the shaft and the

bearing, and

R = Radius of the shaft.

Consider a small ring of radius r and thickness dr. Let dl is

the length of ring along the cone, such that

                                  dl = dr cosec α
∴   Area of the ring,

                                   A = 2πr.dl = 2πr.dr cosec α
...(∵ dl = dr cosec α)

1.  Considering uniform pressure

We know that normal load acting on the ring,

                              δW
n
 = Normal pressure × Area

                                      = p
n
 × 2πr.dr cosec α

and vertical load acting on the ring,

                              *δW  = Vertical component of δW
n
 = δW

n
.sin α

                                      =p
n
 × 2πr.dr cosec α. sin α = p

n
 × 2π r.dr

∴   Total vertical load transmitted to the bearing,

                                

22
2

0 0

2 . 2 2 .
22

RR

n n n n

Rr
W p r dr p p R p

 = × π = π = π × = π  ∫
or                                         

2/
n

p W R= π

We know that frictional force on the ring acting tangentially at radius r,

  . . .2 . cosec 2 . .cosec . .
r n n n

F W p r dr p r dr= µ δ = µ π α = πµ α

and frictional torque acting on the ring,

  
22 . .cosec . . 2 . cosec . .

r r n n
T F r p r dr r p r dr= × = πµ α × = πµ α
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Integrating the expression within the limits from 0 to R for the total frictional torque on the

conical pivot bearing.

∴   Total frictional torque,

    

3
2

0 0

2 . cosec . 2 . .cosec
3

RR

n n

r
T p r dr p

 = πµ α = πµ α   ∫
3 32

2 . .cosec . .cosec
3 3n n

R R
p p

π= πµ α × = × µ α ...(i)

Substituting the value of p
n
 in equation (i),

    

3

2

2 2
cosec . . . cosec

3 3

R W
T W R

R

π= × π× × α = × µ α
π

Note : If slant length (l ) of the cone is known, then

  
2

. .
3

T W l= × µ ...( cosec )l R= α�

2.  Considering uniform wear

In Fig. 10.18, let p
r
 be the normal intensity of pressure at a distance r from the central axis.

We know that, in case of uniform wear, the intensity of pressure varies inversely with the distance.

∴           p
r
.r  = C (a constant)    or p

r
 = C/r

and the load transmitted to the ring,

         2 . 2 . 2 .
r

C
W p r dr r dr C dr

r
δ = × π = × π = π

∴  Total load transmitted to the bearing,

            [ ]0

0

2 . 2 2 . or
2

R
R W

W C dr C C R Cr
R

= π = π = π =
π∫

We know that frictional torque acting on the ring,

            
2 2

2 . .cosec . . 2 cosec . .
r r

C
T p r dr r dr

r
= πµ α = πµ × × α

                 2 . .cosec . .C r dr= πµ α

∴  Total frictional torque acting on the bearing,

2

0 0

2 . .cosec . . 2 . .cosec
2

RR
r

T C r dr C
 = π µ α = πµ α   ∫

2
22 . .cosec . .cosec .

2

R
C C R= π µ α × = πµ α

Substituting the value of C, we have

        
2 1 1

cosec . . . cosec . .
2 2 2

W
T R W R W l

R
= πµ × × α = ×µ α = × µ

π

10.29. Trapezoidal or Truncated Conical Pivot Bearing

If the pivot bearing is not conical, but a frustrum of a cone with r
1
 and r

2
, the external and

internal radius respectively as shown in Fig. 10.19, then
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Fig.10.19. Trapezoidal

pivot bearing.

Area of the bearing surface,

2 2

1 2
[( ) ( ) ]A r r= π −

∴  Intensity of uniform pressure,

2 2

1 2
[( ) ( ) ]

n

W W
p

A r r
= =

π − ...(i)

1.  Considering uniform pressure

The total torque acting on the bearing is obtained by integrating the

value of T
r
 (as discussed in Art. 10.27) within the limits r

1
 and r

2
.

∴  Total torque acting on the bearing,

1

2

1

2

3
22 . cosec . . 2 . .cosec

3

rr

n n

r
r

r
T p r dr p

 = πµ α = πµ α   ∫
3 3

1 2
( ) ( )

2 . .cosec
3

n

r r
p

 −= πµ α 
 

Substituting the value of p
n
 from equation (i),

3 3

1 2
2 2

1 2

( ) ( )
2 . cosec

[( ) ( ) ] 3

W r r
T

r r

 −= πµ × × α π −  

3 3

1 2

2 2

1 2

( ) ( )2
. .cosec

3 ( ) ( )

r r
W

r r

 −
= × µ α  

−  

2.  Considering uniform wear

We have discussed in Art. 10.26 that the load transmitted to the ring,

δW  = 2πC.dr

∴  Total load transmitted to the ring,

1

1

2

2

1 2
2 . 2 [ ] 2 ( )

r
r

r

r

W C dr C r C r r= π = π = π −∫

or
1 2

2 ( )

W
C

r r
=

π −       ...(ii)

We know that the torque acting on the ring, considering uniform wear, is

T
r
 = 2π µ.C cosec α.r.dr

∴    Total torque acting on the bearing,

1

2

1

2

2

2 . sec . . 2 . .cosec
2

rr

r
r

r
T C co r dr C

 = π µ α = π µ α  ∫

2 2
1 2

. .cosec ( ) ( )C r r = π µ α − 
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Substituting the value of C from equation (ii), we get

2 2

1 2
1 2

cosec [( ) ( ) ]
2 ( )

W
T r r

r r
= πµ × × α −

π −

1 2

1
. ( ) cosec . . cosec

2
W r r W R= × µ + α = µ α

where R = Mean radius of the bearing 
1 2

2

r r+
=

Example 10.17. A conical pivot supports a load of 20 kN, the cone angle is 120º and the

intensity of normal pressure is not to exceed 0.3 N/mm2. The external diameter is twice the internal

diameter. Find the outer and inner radii of the bearing surface. If the shaft rotates at 200 r.p.m. and

the coefficient of friction is 0.1, find the power absorbed in friction. Assume uniform pressure.

Solution.   Given : W = 20 kN = 20 × 103 N ; 2 α = 120º  or  α = 60º ; p
n
 = 0.3 N/mm2 ;

N = 200 r.p.m. or ω = 2 π × 200/60 = 20.95 rad/s ; µ = 0.1

Outer and inner radii of the bearing surface

Let r
1
 and r

2
= Outer and inner radii of the bearing surface, in mm.

Since the external diameter is twice the internal diameter, therefore

r
1

= 2 r
2

We know that intensity of normal pressure ( p
n
),

3 3

2 2 2 2 2

1 2 2 2 2

20 10 2.12 10
0.3

[( ) ( ) ] [(2 ) ( ) ] ( )

W

r r r r r

× ×
= = =

π − π −

∴              2 3 3

2 2
( ) 2.12 10 / 0.3 7.07 10 or 84 mmr r= × = × = Ans.

and r
1
 = 2 r

2
 = 2 × 84 = 168 mm  Ans.

Power absorbed in friction

We know that total frictional torque (assuming uniform pressure),

                      

3 3

1 2

2 2

1 2

( ) ( )2
. .cosec

3 ( ) ( )

r r
T W

r r

 −
= × µ α  

−  

                          

3 3
3

2 2

2 (168) (84)
0.1 20 10 cosec 60º N-mm

3 (168) (84)

 −= × × × × = 
− 

 301760 N-mm = 301.76 N-m=

∴   Power absorbed in friction,

 P = T.ω = 301.76 × 20.95 = 6322 W = 6.322 kW  Ans.

Example 10.18. A conical pivot bearing supports a vertical shaft of 200 mm diameter. It is

subjected to a load of 30 kN. The angle of the cone is 120º and the coefficient of friction is 0.025.

Find the power lost in friction when the speed is 140 r.p.m., assuming 1. uniform pressure ; and

2. uniform wear.

Solution. Given : D = 200 mm or R = 100 mm = 0.1 m ; W = 30 kN = 30 × 103 N ; 2 α = 120º

or α = 60º ; µ = 0.025 ; N = 140 r.p.m. or ω = 2 π × 140/160 = 14.66 rad/s

1.  Power lost in friction assuming uniform pressure

We know that total frictional torque,

2
. . . cosec

3
T W R= × µ α
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32
0.025 30 10 0.1 cosec 60º 57.7 N-m

3
= × × × × × =

∴   Power lost in friction,

P = T.ω = 57.7 × 14.66 = 846 W Ans.

2.  Power lost in friction assuming uniform wear

We know that total frictional torque,

1
. . . cosec

2
T W R= × µ α

31
0.025 30 10 0.1 cosec 60º 43.3 N-m

2
= × × × × × =

∴  Power lost in friction,  P = T.ω = 43.3 × 14.66 = 634.8 W Ans.

10.30. Flat Collar Bearing

We have already discussed that collar bearings are used to take the axial thrust of the rotating

shafts. There may be a single collar or multiple collar bearings as shown in Fig. 10.20 (a) and (b)

respectively. The collar bearings are also known as thrust bearings. The friction in the collar bear-

ings may be found as discussed below :

(a) Single collar bearing (b) Multiple collar bearing.

Fig. 10.20. Flat collar bearings.

Consider a single flat collar bearing supporting a shaft as shown in Fig. 10.20 (a).

Let r
1

= External radius of the collar, and

r
2

= Internal radius of the collar.

∴   Area of the bearing surface,

A = π [(r
1
)2 – (r

2
)2]
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1.  Considering uniform pressure

When the pressure is uniformly distributed over the bearing surface, then the intensity of

pressure,

         2 2

1 2
[ ) ( ) ]

W W
p

A r r
= =

π − ...(i)

We have seen in Art. 10.25, that the frictional torque on the ring of radius r and thickness dr,

         
22 . . .

r
T p r dr= πµ

Integrating this equation within the limits from r
2
 to r

1
 for the total frictional torque on the

collar.

∴  Total frictional torque,

          

1

1

2

2

3 3
2 3 1 2

( ) ( )
2 . . . 2 . 2 .

3 3

r
r

r
r

r r r
T p r dr p p

   −= πµ = πµ = πµ   
  

∫
Substituting the value of p from equation (i),

         

3 3

1 2
2 2

1 2

( ) ( )
2

[( ) ( ) ] 3

W r r
T

r r

 −= πµ ×  π −  

          

3 3

1 2

2 2

1 2

( ) ( )2
.

3 ( ) ( )

r r
W

r r

 −
= × µ  

−  

Notes: 1. In order to increase the amount of rubbing surfaces so as to reduce the intensity of pressure, it is better

to use two or more collars, as shown in Fig. 10.20 (b), rather than one larger collar.

2.  In case of a multi-collared bearings with, say n collars, the intensity of the uniform pressure,

                                                 2 2

1 2

Load

No. of collars × Bearing area of one collar [( ) ( ) ]

W
p

n r r
= =

π −

3.  The total torque transmitted in a multi collared shaft remains constant i.e.

                                  

3 3

1 2
2 2

1 2

( ) ( )2
.

3 ( ) ( )

r r
T W

r r

 −
= × µ  

−  
2.  Considering unifrom wear

We have seen in Art. 10.25 that the load transmitted on the ring, considering uniform wear is,

        .2 . 2 . 2 .
r

C
W p r dr r dr C dr

r
δ = π = × π = π

∴  Total load transmitted to the collar,

       
1

2

1

2
1 2

2 . 2 [ ] 2 ( )
r r

rr
W C dr C r C r r= π = π = π −∫

or         
1 2

2 ( )

W
C

r r
=

π − ...(ii)
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We also know that frictional torque on the ring,

. . 2 . . 2 . . .
r

T W r C dr r C r dr= µ δ = µ × π = πµ
∴  Total frictional torque on the bearing,

1
1

2
2

2 22
1 2

( ) ( )
2 . . 2 . 2 .

2 2

rr

r
r

r rr
T C r dr C C

   −= πµ = πµ = πµ      
∫

2 2

1 2
. [( ) ( ) ]C r r= πµ −

Substituting the value of C from equation (ii),

2 2

1 2 1 2
1 2

1
[( ) ( ) ] . ( )

2 ( ) 2

W
T r r W r r

r r
= πµ × − = × µ +

π −

Example 10.19. A thrust shaft of a ship has 6

collars of 600 mm external diameter and 300 mm internal

diameter. The total thrust from the propeller is 100 kN. If

the coefficient of friction is 0.12 and speed of the engine

90 r.p.m., find the power absorbed in friction at the thrust

block, assuming l. uniform pressure ; and 2. uniform

wear.

Solution. Given : n = 6 ; d
1
 = 600 mm or r

1
 = 300

mm ; d
2
 = 300 mm or r

2
 = 150 mm ; W = 100 kN

= 100 × 103 N ; µ = 0.12 ; N  = 90 r.p.m. or

ω = 2 π × 90/60 = 9.426 rad/s

1.  Power absorbed in friction, assuming uniform

      pressure

We know that total frictional torque transmitted,

                              

3 3

1 2

2 2

1 2

( ) ( )2
.

3 ( ) ( )

r r
T W

r r

 −
= × µ  

−  

3 3
3 3

2 2

2 (300) (150)
0.12 100 10 2800 10 N-mm

3 (300) (150)

 −= × × × = × 
− 

2800 N-m=
∴   Power absorbed in friction,

. 2800 9.426 26 400 W 26.4 kWP T= ω = × = = Ans.

2.  Power absorbed in friction assuming uniform wear

We know that total frictional torque transmitted,

3

1 2

1 1
. ( ) 0.12 100 10 (300 150) N-mm

2 2
T W r r= × µ + = × × × +

32700 10 N-mm 2700 N-m= × =

∴  Power absorbed in friction,

P = T.ω =  2700 × 9.426 = 25 450 W = 25.45 kW  Ans.

Ship propeller.
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Example 10.20. A shaft has a number of a collars integral with it. The external diameter of

the collars is 400 mm and the shaft diemater is 250 mm. If the intensity of pressure is 0.35 N/mm2

(uniform) and the coefficient of friction is 0.05, estimate : 1. power absorbed when the shaft runs at

105 r.p.m. carrying a load of 150 kN ; and 2. number of collars required.

Solution. Given : d
1
 = 400 mm  or r

1
 = 200 mm ; d

2
 = 250 mm or r

2
 = 125 mm ; p = 0.35

N/mm2 ; µ = 0.05 ; N = 105 r.p.m or ω = 2 π × 105/60 = 11 rad/s ; W = 150 kN = 150 × 103 N

1.  Power absorbed

We know that for uniform pressure, total frictional torque transmitted,

                   

3 3 3 3
31 2

2 2 2 2

1 2

( ) ( )2 2 (200) (125)
. 0.05 150 10 N-mm

3 3( ) ( ) (200) (125)

r r
T W

r r

   − −= × µ = × × ×   
− −    

                        35000 248 1240 10 N-mm 1240 N-m= × = × =
∴  Power absorbed,

      . 1240 11 13640 W 13.64 kWP T= ω = × = = Ans.

2.  Number of collars required

Let       n  = Number of collars required.

We know that the intensity of uniform pressure ( p),

              

3

2 2 2 2

1 2

150 10 1.96
0.35

. [( ) ( ) ] . [(200) (125) ]

W

nn r r n

×= = =
π − π −

∴       1.96 / 0.35 5.6 say 6n = = Ans.

Example 10.21. The thrust of a propeller shaft in a marine engine is taken up by a number

of collars integral with the shaft which is 300 mm in diameter. The thrust on the shaft is 200 kN and

the speed is 75 r.p.m. Taking µ constant and equal to 0.05 and assuming intensity of pressure as

uniform and equal to 0.3 N/mm2, find the external diameter of the collars and the number of collars

required, if the power lost in friction is not to exceed 16 kW.

Solution. Given : d
2
 = 300 mm or r

2
 = 150 mm = 0.15 m ; W = 200 kN = 200 × 103 N ;

N = 75 r.p.m. or ω = 2 π × 75/60 = 7.86 rad/s ; µ = 0.05 ; p = 0.3 N/mm2 ; P = 16 kW = 16 × 103 W

Let       T = Total frictional torque transmitted in N-m.

We know that power lost in friction (P),

       16 × 103 = T.ω = T × 7.86  or  T = 16 × 103/7.86 = 2036 N-m

External diameter of the collar

Let        d
1
 = External diameter of the collar in metres = 2 r

1
.

We know that for uniform pressure, total frictional torque transmitted (T ),

      

3 3 2 2
1 2 1 2 1 2

2 2
1 21 2

( ) ( ) ( ) ( ) .2 2
2036 .

3 3( ) ( )

r r r r r r
W W

r rr r

   − + +
= × µ = × µ ×   

+−     

*

      

2 2
3 1 1

1

( ) (0.15) 0.152
0.05 200 10

3 0.15

r r

r

 + + ×
= × × ×  

+  

    
3 2

1 1 1
2036 3( 0.15) 20 10 [( ) 0.15 0.0225]r r r× + = × + +

*

3 3 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

2 3
1 2 1 2 1 21 2

( ) ( ) ( ) [( ) ( ) . ] ( ) ( ) .

( ) ( )( ) ( )

r r r r r r r r r r r r

r r r r r rr r

− − + + + +
= =

+ − +−
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Dividing throughout by 20 × 103,

           0.305 (r
1
 + 0.15) = (r

1
)2 + 0.15 r

1
 + 0.0225

(r
1
)2 – 0.155 r

1
 – 0.0233 = 0

Solving this as a quadratic equation,

     
2

1

0.155 (0.155) 4 0.0233 0.155 0.342

2 2
r

± + × ±= =

    = 0.2485 m = 248.5 mm ...(Taking + ve sign)

∴     d
1
 = 2 r

1
 = 2 × 248.5 = 497 mm  Ans.

Number of collars

Let      n = Number of collars.

We know that intensity of pressure (p),

     

3

2 2 2 2

1 2

200 10 1.62
0.3

[ ) ( ) ] [(248.5) (150) ]

W

nn r r n

×= = =
π − π −

∴      1.62 / 0.3 5.4 or 6n = = Ans.

10.31. Friction Clutches

A friction clutch has its principal application in the transmission of power of shafts and

machines which must be started and stopped frequently. Its application is also found in cases in which

power is to be delivered to machines partially or fully loaded. The force of friction is used to start the

driven shaft from rest and gradually brings it up to the proper speed without excessive slipping of the

friction surfaces. In automobiles, friction clutch is used to connect the engine to the driven shaft. In

operating such a clutch, care should be taken so that the friction surfaces engage easily and gradually

brings the driven shaft up to proper speed. The proper alignment of the bearing must be maintained

and it should be located as close to the clutch as possible. It may be noted that

1. The contact surfaces should develop a frictional force that may pick up and hold the load

with reasonably low pressure between the contact surfaces.

2. The heat of friction should be rapidly dissipated and tendency to grab should be at a

minimum.

3. The surfaces should be backed by a material stiff enough to ensure a reasonably uniform

distribution of pressure.

The friction clutches of the following types are important from the subject point of view :

1. Disc or plate clutches (single disc or multiple disc clutch),

2. Cone clutches, and

3. Centrifugal clutches.

We shall now discuss, these clutches, in detail, in the following pages. It may be noted that

the disc and cone clutches are based on the same theory as the pivot and collar bearings.

10.32. Single Disc or Plate Clutch

A single disc or plate clutch, as shown in Fig. 10.21, consists of a clutch plate whose both

sides are faced with a friction material (usually of Ferrodo). It is mounted on the hub which is free to

move axially along the splines of the driven shaft. The pressure plate is mounted inside the clutch

body which is bolted to the flywheel. Both the pressure plate and the flywheel rotate with the engine
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crankshaft or the driving shaft. The pressure plate

pushes the clutch plate towards the flywheel by a set

of strong springs which are arranged radially inside

the body. The three levers (also known as release

levers or fingers) are carried on pivots suspended

from the case of the body. These are arranged in such

a manner so that the pressure plate moves away from

the flywheel by the inward movement of a thrust

bearing. The bearing is mounted upon a forked shaft

and moves forward when the clutch pedal is pressed.

When the clutch pedal is pressed down, its

linkage forces the thrust release bearing to move in

towards the flywheel and pressing the longer ends of the levers inward. The levers are forced to turn

on their suspended pivot and the pressure plate moves away from the flywheel by the knife edges,

thereby compressing the clutch springs. This action removes the pressure from the clutch plate and

thus moves back from the flywheel and the driven shaft becomes stationary. On the other hand, when

the foot is taken off from the clutch pedal, the thrust bearing moves back by the levers. This allows the

springs to extend and thus the pressure plate pushes the clutch plate back towards the flywheel.

Fig. 10.21. Single disc or plate clutch.

The axial pressure exerted by the spring provides a frictional force in the circumferential

direction when the relative motion between the driving and driven members tends to take place. If the

torque due to this frictional force exceeds the torque to be transmitted, then no slipping takes place

and the power is transmitted from the driving shaft to the driven shaft.

Now consider two friction surfaces, maintained in contact by an axial thrust W , as shown in

Fig. 10.22 (a).

Single disc clutch
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Let T = Torque transmitted by the clutch,

p = Intensity of axial pressure with which the contact surfaces are held

together,

r
1
 and r

2
= External and internal radii of friction faces, and

µ = Coefficient of friction.

Consider an elementary ring of radius r and thickness dr as shown in Fig. 10.22 (b).

We know that area of contact surface or friction surface,

= 2 π r.dr

∴  Normal or axial force on the ring,

δW = Pressure × Area = p × 2 π r.dr

and the frictional force on the ring acting tangentially at radius r,

F
r

= µ.δW  = µ.p × 2 π r.dr

∴   Frictional torque acting on the ring,

                          T
r
 = F

r
 × r = µ.p × 2 π r.dr × r = 2 π × µ .p.r2 dr

                                                          (a)                                            (b)

Fig. 10.22. Forces on a single disc or plate clutch.

We shall now consider the following two cases :

1.  When there is a uniform pressure, and

2.  When there is a uniform wear.

1.  Considering uniform pressure

When the pressure is uniformly distributed over the entire area of the friction face, then the

intensity of pressure,

2 2

1 2
[( ) ( ) ]

W
p

r r
=

π − ...(i)

where W = Axial thrust with which the contact or friction surfaces are held together.

We have discussed above that the frictional torque on the elementary ring of radius r and

thickness dr is

Tr = 2 π µ.p.r2 dr

Integrating this equation within the limits from r2 to r1 for the total frictional torque.
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∴  Total frictional torque acting on the friction surface or on the clutch,

                          

1
2

1
2

3 3
2 3 1 2

( ) ( )
2 . . . 2 2

3 3

rr

r
r

r r r
T p r dr p p

   −= πµ = πµ = πµ      
∫

Substituting the value of p from equation (i),

                          

3 3

1 2

2 2

1 2

( ) ( )
2

3[( ) ( ) ]

r rW
T

r r

−
= πµ × ×

π −

3 3

1 2

2 2

1 2

( ) ( )2
. . .

3 ( ) ( )

r r
W W R

r r

 −
= × µ = µ 

−  
where                              R = Mean radius of friction surface

3 3

1 2

2 2

1 2

( ) ( )2

3 ( ) ( )

r r

r r

 −
=  

−  
2.  Considering uniform wear

In Fig. 10.22, let p be the normal intensity of pressure at a distance r from the axis of the

clutch. Since the intensity of pressure varies inversely with the distance, therefore

p.r. = C (a constant)   or   p = C/r ...(i)

and the normal force on the ring,

.2 . 2 . 2 .
C

W p r dr C dr C dr
r

δ = π = × π = π

∴  Total force acting on the friction surface,

[ ]
1

1

2

2

1 2
2 2 2 ( )

r
r

r

r

W C dr C r C r r= π = π = π −∫

or
1 2

2 ( )

W
C

r r
=

π −
We know that the frictional torque acting on the ring,

2 22 . . 2 . 2 . . .
r

C
T p r dr r dr C r dr

r
= πµ = πµ × × = πµ

...(∵  p = C/r)

∴  Total frictional torque on the friction surface,

1 1

22

2 22
1 2

( ) ( )
2 . . . 2 . 2 .

2 2

r r

rr

r rr
T C r dr C C

   −= πµ = πµ = πµ      
∫

2 2 2 2
1 2 1 2

1 2

. [( ) ( ) ] ( ) ( )
2 ( )

W
C r r r r

r r
 = πµ − = πµ × − π −

1 2

1
. ( ) . .

2
W r r W R= × µ + = µ

where R = Mean radius of the friction surface 
1 2

2

r r+
=

Notes : 1. In general, total frictional torque acting on the friction surface (or on the clutch) is given by

T = n.µ.W.R
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where n = Number of pairs of friction or contact surfaces, and

R = Mean radius of friction surface

3 3

1 2
2 2

1 2

( ) ( )2

3 ( ) ( )

r r

r r

 −
=  

−  
...(For uniform pressure)

1 2

2

r r+
= ...(For uniform wear)

2.  For a single disc or plate clutch, normally both sides of the disc are effective. Therefore, a single disc

clutch has two pairs of surfaces in contact, i.e. n = 2.

3.  Since the intensity of pressure is maximum at the inner radius (r
2
) of the friction or contact surface,

therefore equation (i) may be written as

p
max

 × r
2
 = C or p

max
 = C/r

2

4.  Since the intensity of pressure is minimum at the outer radius (r
1
) of the friction or contact surface,

therefore equation (i) may be written as

p
min

 × r
1
 = C or p

min
 = C/r

1

5.  The average pressure ( p
av

) on the friction or contact surface is given by

2 2
1 2

Total force on friction surface

Cross-sectional area of friction surface [( ) ( ) ]
av

W
p

r r
= =

π −
6.  In case of a new clutch, the intensity of pressure is approximately uniform but in an old clutch the

uniform wear theory is more approximate.

7.  The uniform pressure theory gives a higher frictional torque than the uniform wear theory. Therefore

in case of friction clutches, uniform wear should be considered, unless otherwise stated.

10.33. Multiple Disc Clutch

A multiple disc clutch, as shown in Fig. 10.23, may be used when a large torque is to be

transmitted. The inside discs (usually of steel) are fastened to the driven shaft to permit axial motion

(except for the last disc). The outside discs (usually of bronze) are held by bolts and are fastened to

the housing which is keyed to the driving shaft. The multiple disc clutches are extensively used in

motor cars, machine tools etc.

Let n
1

= Number of discs on the driving shaft, and

n
2

= Number of discs on the driven shaft.

Dual Disc Clutches.
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∴  Number of pairs of contact surfaces,

n = n
1
 + n

2
 – 1

and total frictional torque acting on the friction surfaces or on the clutch,

T = n.µ.W.R

where R = Mean radius of the friction surfaces

   

3 3

1 2

2 2

1 2

( ) ( )2

3 ( ) ( )

r r

r r

 −
=  

−  
...(For uniform pressure)

1 2

2

r r+
= ...(For uniform wear)

Fig. 10.23. Multiple disc clutch.

Example 10.22. Determine the maximum, minimum and average pressure in plate clutch

when the axial force is 4 kN. The inside radius of the contact surface is 50 mm and the outside radius

is 100 mm. Assume uniform wear.

Solution. Given : W  = 4 kN = 4 × 103 N ; r
2
 = 50 mm ; r

1
 = 100 mm

Maximum pressure

Let p
max

= Maximum pressure.

Since the intensity of pressure is maximum at the inner radius (r
2
), therefore

p
max

 × r
2

= C   or  C = 50 p
max

We know that the total force on the contact surface (W ),

4 × 103 = 2 π C (r
1
 – r

2
) = 2 π × 50 p

max
 (100 – 50) = 15 710 p

max

∴ p
max

= 4 × 103/15 710 = 0.2546 N/mm2  Ans.

Minimum pressure

Let p
min

= Minimum pressure.

Since the intensity of pressure is minimum at the outer radius (r
1
), therefore

p
min

 × r
1

= C    or    C = 100 p
min
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We know that the total force on the contact surface (W ),

4 × 103 = 2 π C (r
1
 – r

2
) = 2π × 100 p

min
 (100 – 50) = 31 420 p

min

∴ p
min

= 4 × 103/31 420 = 0.1273 N/mm2  Ans.

Average pressure

We know that average pressure,

Total normal force on contact surface

Cross-sectional area of contact surfacesav
p =

3
2

2 2 2 2

1 2

4 10
0.17 N/mm

[( ) ( ) ] [(100) (50) ]

W

r r

×
= = =

π − π −
Ans.

Example 10.23. A single plate clutch, with both sides effective, has outer and inner

diameters 300 mm and 200 mm respectively. The maximum intensity of pressure at any point in the

contact surface is not to exceed 0.1 N/mm2. If the coefficient of friction is 0.3, determine the power

transmitted by a clutch at a speed 2500 r.p.m.

Solution. Given : d
1
 = 300 mm or r

1
 = 150 mm ; d

2
 = 200 mm or r

2
 = 100 mm ; p = 0.1 N/mm2 ;

µ = 0.3 ; N = 2500 r.p.m. or ω = 2π × 2500/60 = 261.8 rad/s

Since the intensity of pressure ( p) is maximum at the inner radius (r
2
), therefore for uniform

wear,

p.r
2

= C    or   C = 0.1 × 100 = 10 N/mm

We know that the axial thrust,

W = 2 π C (r
1
 – r

2
) = 2 π × 10 (150 – 100) = 3142 N

and mean radius of the friction surfaces for uniform wear,

1 2 150 100
125 mm 0.125m

2 2

r r
R

+ +
= = = =

We know that torque transmitted,

T = n.µ.W.R = 2 × 0.3 × 3142 × 0.125 = 235.65 N-m

...( 2,for both sides of plate effective)n =�

∴  Power transmitted by a clutch,

P = T.ω = 235.65 × 261.8 = 61 693 W = 61.693 kW Ans.

Example 10.24. A single plate clutch, effective on both sides, is required to transmit 25 kW

at 3000 r.p.m. Determine the outer and inner radii of frictional surface if the coefficient of friction is

0.255, the ratio of radii is 1.25 and the maximum pressure is not to exceed 0.1 N/mm2. Also deter-

mine the axial thrust to be provided by springs. Ass ume the theory of uniform wear.

Solution. Given: n = 2 ; P = 25 kW = 25 × 103 W ; N = 3000 r.p.m. or ω = 2π × 3000/60

= 314.2 rad/s ; µ = 0.255 ; r
1
/r

2
 = 1.25 ; p = 0.1 N/mm2

Outer and inner radii of frictional surface

Let r
1
 and r

2
= Outer and inner radii of frictional surfaces, and

T = Torque transmitted.

Since the ratio of radii (r
1
/r

2
) is 1.25, therefore

r
1

= 1.25 r
2

We know that the power transmitted (P),

25 × 103 = T.ω = T × 314.2

∴ T = 25 × 103/314.2 = 79.6 N-m = 79.6 × 103 N-mm
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Since the intensity of pressure is maximum at the inner radius (r
2
), therefore

p.r
2

= C         or        C = 0.1 r
2
 N/mm

and the axial thrust transmitted to the frictional surface,

W = 2 π C (r
1
 – r

2
) = 2 π × 0.1 r

2
 (1.25 r

2
 – r

2
) = 0.157 (r

2
)2 ...(i)

We know that mean radius of the frictional surface for uniform wear,

1 2 2 2
2

1.25
1.125

2 2

r r r r
R r

+ +
= = =

 We know that torque transmitted (T),

79.6 × 103 = n.µ.W.R = 2 × 0.255 × 0.157 (r
2
)2 × 1.125 r

2
 = 0.09 (r

2
)3

∴ (r
2
)3 = 79.6 × 103/0.09 = 884 × 103   or  r

2
 = 96 mm  Ans.

and r
1

= 1.25 r
2
 = 1.25 × 96 = 120 mm  Ans.

Axial thrust to be provided by springs

We know that axial thrust to be provided by springs,

W = 2 π C (r
1
 – r

2
) = 0.157 (r

2
)2 ...[From equation (i)]

= 0.157 (96)2 = 1447 N Ans.

Example 10.25. A single dry plate clutch transmits 7.5 kW at 900 r.p.m. The axial pressure

is limited to 0.07 N/mm2. If the coefficient of friction is 0.25, find 1. Mean radius and face width of

the friction lining assuming the ratio of the mean radius to the face width as 4, and 2. Outer and

inner radii of the clutch plate.

Solution.  Given : P = 7.5 kW = 7.5 × 103 W ; N = 900 r.p.m or ω = 2 π × 900/60 = 94.26 rad/s ;

p = 0.07 N/mm2 ; µ = 0.25

1.  Mean radius and face width of the friction lining

Let R = Mean radius of the friction lining in mm, and

w = Face width of the friction lining in mm,

Ratio of mean radius to the face width,

R/w = 4 ...(Given)

We know that the area of friction faces,

A = 2 π R.w

∴ Normal or the axial force acting on the friction faces,

W = A × p = 2 π R.w.p

We know that torque transmitted (considering uniform wear),

. . . . (2 . . )T n W R n R w p R= µ = µ π

3. . . .2
24

R
n R n p RR p

π = µ = × µπ × ×   ...(∵ w = R/4)

3 3
2 0.25 0.07 0.055 N-mm

2
R R

π
= × × × = ...(i)

...(∵  n = 2, for single plate clutch)
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We also know that power transmitted (P),

7.5 × 103 = T.ω = T × 94.26

∴ T = 7.5 × 103/94.26 = 79.56 N-m = 79.56 × 103 N-mm ...(ii)

From equations (i) and (ii),

R3 = 79.56 × 103/0.055 = 1446.5 × 103  or  R = 113 mm Ans.

and w = R/4 = 113/4 = 28.25mm Ans.

2.  Outer and inner radii of the clutch plate

Let r
1
 and r

2
 = Outer and inner radii of the clutch plate respectively.

Since the width of the clutch plate is equal to the difference of the outer and inner radii,

therefore

w = r
1
 – r

2
 = 28.25 mm ...(iii)

Also for uniform wear, the mean radius of the clutch plate,

                              
1 2

1 2
or 2 2 113 226 mm

2

r r
R r r R

+
= + = = × = ...(iv)

From equations (iii) and (iv),

r
1
 = 127.125 mm ; and r

2
 = 98.875  Ans.

Example 10.26. A dry single plate clutch is to be designed for an automotive vehicle whose

engine is rated to give 100 kW at 2400 r.p.m. and maximum torque 500 N-m. The outer radius of

friction plate is 25% more than the inner radius. The intensity of pressure between the plate  is not to

exceed 0.07 N/mm2. The coefficient of friction may be assumed equal to 0.3. The helical springs

required by this clutch to provide axial force necessary to engage the clutch are eight. If each spring

has stiffness equal to 40 N /mm, determine the initial compression in the springs and dimensions of

the friction plate.

Solution. Given : P = 100 kW = 100 × 103 W ; T = 500 N-m = 500 × 103 N-mm ;

p = 0.07 N/mm2 ; µ = 0.3 ; Number of springs = 8 ; Stiffness = 40 N/mm

Dimensions of the friction plate

Let r1 and r2 = Outer and inner radii of the friction plate respectively.

Since the outer radius of the friction plate is 25% more than the inner radius, therefore

r
1

= 1.25 r
2

We know that, for uniform wear,

p.r
2

= C     or    C = 0.07 r
2
 N/mm

and load transmitted to the friction plate,

W = 2 π C (r
1
 – r

2
) = 2 π × 0.07 r2 (1.125 r

2
 – r

2
) = 0.11 (r

2
)2 N

         ...(i)

We know that mean radius of the plate for uniform wear,

1 2 2 2
2

1.25
1.125

2 2

r r r r
R r

+ +
= = =

∴  Torque transmitted (T ),

500 × 103 = n.µ.W .R = 2 × 0.3 × 0.11 (r2)2 × 1.125 r2 = 0.074 (r2)
3

...(∵  n = 2)

             ∴ (r2)3 = 500 × 103/0.074 = 6757 × 103  or  r2 = 190 mm   Ans.
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and r
1

= 1.25 r
2
 = 1.25 × 190 = 273.5 mm Ans.

Initial compression of the springs

We know that total stiffness of the springs,

s = Stiffness per spring × No. of springs = 40 × 8 = 320 N/mm

Axial force required to engage the clutch,

W = 0.11 (r
2
)2 = 0.11 (190)2 = 3970 N ...[From equation (i)]

∴  Initial compression in the springs

= W/s = 3970/320 = 12.5 mm  Ans.

Example 10.27. A rotor is driven by a co-axial motor  through a single plate clutch, both

sides of the plate being effective. The external and internal diameters of the plate are respectively

220 mm and 160 mm and the total spring load pressing the plates together is 570 N. The motor

armature and shaft has a mass of 800 kg with an effective radius of gyration of 200 mm. The rotor

has a mass of 1300 kg with an effective radius of gyration of 180 mm. The coefficient of friction for

the clutch is 0.35.

The driving motor is brought up to a speed of 1250 r.p.m. when the current is switched off

and the clutch suddenly engaged. Determine

1. The final speed of motor and rotor, 2. The time to reach this speed, and 3. The kinetic

energy lost during the period of slipping.

How long would slipping continue if it is assumed that a constant resisting torque of 60 N-m

were present? If instead of a resisting torque, it is assumed that a constant driving torque of 60 N-m

is maintained on the armature shaft, what would then be slipping time?

Solution. Given : d
1
 = 220 mm or r

1
 = 110 mm ; d

2
 = 160 mm or r

2
 = 80 mm ; W = 570 N ;

m
1
 = 800 kg ; k

1
 = 200 mm = 0.2 m ; m

2
 = 1300 kg ; k

2
 = 180 mm = 0.18 m ; µ = 0.35 ; N

1
 = 1250 r.p.m.

or ω
1
 = π × 1250/60 = 131 rad/s

1. Final speed of the motor and rotor

Let ω
3

= Final speed of the motor and rotor in rad/s.

We know that moment of inertia for the motor armature and shaft,

I
1

= m
1
 (k

1
)2 = 800 (0.2)2 = 32 kg-m2

and moment of inertia for the rotor,

I
2

= m
2
 (k

2
)2 = 1300 (0.18)2 = 42.12 kg-m2

Since the angular momentum before slipping is equal to the angular momentum after slip-

ping, therefore

I
1
.ω

1
 + I

2
.ω

2
= (I

1
 + I

2
) ω

3

32 × 131 + I
2
 × 0 = (32 + 42.12) ω

3
 = 74.12 ω

3
...(∵ ω

2
 = 0)

∴ ω
3

= 32 × 131 / 74.12 = 56.56 rad/s Ans.

2. Time to reach this speed

Let t = Time to reach this speed i.e. 56.56 rad/s.

We know that mean radius of the friction plate,

1 2 110 80
95 mm 0.095 m

2 2

r r
R

+ += = = =
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Time of slipping assuming constant driving torque of 60 N-m

In this case, T
1

= 60 – 37.9 = 22.1 N-m

Since    
1 2

1 1 1

1 2

, therefore
T T

t t
I I

ω + × = ×

        1 1 1 1

22.1 37.9
131 or 131 0.69 0.9

32 42.12
t t t t+ × = × + =

∴ 0.9 t
1
 – 0.69 t

1
= 131      or      t

1
 = 624 s  Ans.

Example 10.28. A multiple disc clutch has five plates having four pairs of active friction

surfaces. If the intensity of pressure is not to exceed 0.127 N/mm2, find the power transmitted at 500

r.p.m. The outer and inner radii of friction surfaces are 125 mm and 75 mm respectively. Assume

uniform wear and take coefficient of friction = 0.3.

Solution. Given : n
1
 + n

2
 = 5 ; n = 4 ; p = 0.127 N/mm2 ; N = 500 r.p.m. or ω = 2π × 500/60

= 52.4 rad/s ; r
1
 = 125 mm ; r

2
 = 75 mm ; µ = 0.3

Since the intensity of pressure is maximum at the inner radius r
2
, therefore

p.r
2

= C      or     C = 0.127 × 75 = 9.525 N/mm

We know that axial force required to engage the clutch,

W = 2 π C (r
1
 – r

2
) = 2 π × 9.525 (125 – 75) = 2990 N

and mean radius of the friction surfaces,

1 2 125 75
100 mm 0.1 m

2 2

r r
R

+ +
= = = =

We know that torque transmitted,

T = n.µ.W.R = 4 × 0.3 × 2990 × 0.1 = 358.8 N-m

∴ Power transmitted,

P = T.ω = 358.8 × 52.4 = 18 800 W = 18.8 kW  Ans.

Example 10.29. A multi-disc clutch has three discs on the driving shaft and two on the

driven shaft. The outside diameter of the contact surfaces is 240 mm and inside diameter 120 mm.

Assuming uniform wear and coefficient of friction as 0.3, find the maximum axial intensity of pres-

sure between the discs for transmitting 25 kW at 1575 r.p.m.

Solution. Given : n
1
 = 3 ; n

2
 = 2 ; d

1
 = 240 mm or  r

1
 = 120 mm ; d

2
 = 120 mm or r

2
 = 60 mm ;

µ = 0.3 ; P = 25 kW = 25 × 103 W ; N = 1575 r.p.m. or ω = 2 π × 1575/60 = 165 rad/s

Let T = Torque transmitted in N-m, and

W = Axial force on each friction surface.

We know that the power transmitted (P),

25 × 103 = T.ω = T × 165    or    T = 25 × 103/165 = 151.5 N-m

Number of pairs of friction surfaces,

n = n
1
 + n

2
 – 1 = 3 + 2 – 1 = 4

and mean radius of friction surfaces for uniform wear,

1 2 120 60
90 mm 0.09 m

2 2

r r
R

+ +
= = = =
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We know that torque transmitted (T ),

151.5 = n.µ.W.R = 4 × 0.3 × W × 0.09 = 0.108 W

∴ W = 151.5/0.108 = 1403 N

Let p = Maximum axial intensity of pressure.

Since the intensity of pressure ( p) is maximum at the inner radius (r
2

), therefore for uniform

wear

p.r
2

= C   or    C = p × 60 = 60 p N/mm

We know that the axial force on each friction surface (W ),

1403 = 2 π.C (r
1
 – r

2
) = 2 π × 60 p (120 – 60) = 22 622 p

∴ p = 1403/22 622 = 0.062 N/mm2  Ans.

Example 10.30. A plate clutch has three discs on the driving shaft and two discs on the

driven shaft, providing four pairs of contact surfaces. The outside diameter of the contact surfaces is

240 mm and inside diameter 120 mm. Assuming uniform pressure and µ = 0.3; find the total spring

load pressing the plates together to transmit 25 kW at 1575 r.p.m.

If there are 6 springs each of stiffness 13 kN/m and each of the contact surfaces has worn

away by 1.25 mm, find the maximum power that can be transmitted, assuming uniform wear.

Solution. Given : n
1
 = 3 ; n

2
 = 2 ; n = 4 ; d

1
 = 240 mm or r

1
 = 120 mm ; d

2
 = 120 mm or

r
2
 = 60 mm ; µ = 0.3 ; P = 25 kW = 25 × 103 W ; N = 1575 r.p.m. or ω = 2 π × 1575/60 = 165 rad/s

Total spring load

Let W = Total spring load, and

T = Torque transmitted.

We know that power transmitted (P),

25 × 103 = T.ω = T × 165  or   T = 25 × 103/165 = 151.5 N-m

Mean radius of the contact surface, for uniform pressure,

                             

3 3 3 3
1 2

2 2 2 2

1 2

( ) ( )2 2 (120) (60)
93.3 mm 0.0933 m

3 3( ) ( ) (120) (60)

r r
R

r r

   − −= = = =   
− −    

and torque transmitted (T ),

151.5 = n.µ.W.R = 4 × 0.3 W × 0.0933 = 0.112 W

∴ W = 151.5/0.112 = 1353 N  Ans.

Maximum power transmitted

Given : No of springs = 6

∴  Contact surfaces of the spring

= 8

Wear on each contact surface

= 1.25 mm

∴             Total wear = 8 × 1.25 = 10 mm = 0.01 m

Stiffness of each spring = 13 kN/m = 13 × 103 N/m

∴  Reduction in spring force

= Total wear × Stiffness per spring × No. of springs

= 0.01 × 13 × 103 × 6 = 780 N
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∴ New axial load, W = 1353 – 780 = 573 N

We know that mean radius of the contact surfaces for uniform wear,

                              
1 2 120 60

90 mm 0.09 m
2 2

r r
R

+ +
= = = =

∴ Torque transmitted,

T = n.µ.W.R. = 4 × 0.3 × 573 × 0.09 = 62 N-m

and maximum power transmitted,

 P = T. ω = 62 × 155 = 10 230 W = 10.23 kW  Ans.

10.34. Cone Clutch

A cone clutch, as shown in Fig. 10.24, was extensively used in automobiles but now-a-days it

has been replaced completely by the disc clutch.

Fig. 10.24. Cone clutch.

It consists of one pair of friction surface only. In a cone clutch, the driver is keyed to the

driving shaft by a sunk key and has an inside conical surface or face which exactly fits into the outside

conical surface of the driven. The driven member resting on the feather key in the driven shaft, may

be shifted along the shaft by a forked lever provided at B, in order to engage the clutch by bringing the

two conical surfaces in contact. Due to the frictional resistance set up at this contact surface, the

torque is transmitted from one shaft to another. In some cases, a spring is placed around the driven

shaft in contact with the hub of the driven. This spring holds the clutch faces in contact and maintains

the pressure between them, and the forked lever is used only for disengagement of the clutch. The

contact surfaces of the clutch may be metal to metal contact, but more often the driven member is

lined with some material like wood, leather, cork or asbestos etc. The material of the clutch faces (i.e.

contact surfaces) depends upon the allowable normal pressure and the coefficient of friction.

Consider a pair of friction surface as shown in Fig. 10.25 (a). Since the area of contact of a

pair of friction surface is a frustrum of a cone, therefore the torque transmitted by the cone clutch may

be determined in the similar manner as discussed for conical pivot bearings in Art. 10.28.

Let p
n

= Intensity of pressure with which the conical friction surfaces are held

together (i.e. normal pressure between contact surfaces),

r
1
 and r

2
= Outer and inner radius of friction surfaces respectively.
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R = Mean radius of the friction surface 
1 2 ,

2

r r+
=

α = Semi angle of the cone (also called face angle of the cone) or the

angle of the friction surface with the axis of the clutch,

µ = Coefficient of friction between contact surfaces, and

b = Width of the contact surfaces (also known as face width or clutch

face).

Fig. 10.25. Friction surfaces as a frustrum of a cone.

Consider a small ring of radius r and thickness dr, as shown in Fig. 10.25 (b). Let dl is length

of ring of the friction surface, such that

dl = dr.cosec α
∴  Area of the ring,

A = 2π r.dl = 2πr.dr cosec α
We shall consider the following two cases :

1. When there is a uniform pressure, and

2. When there is a uniform wear.

1.  Considering uniform pressure

We know that normal load acting on the ring,

δW
n

= Normal pressure × Area of ring = p
n 

× 2 π r.dr.cosec α
and the axial load acting on the ring,

δW = Horizontal component of δW
n
 (i.e. in the direction of W )

= δW
n 

× sin α = p
n 

× 2π r.dr. cosec α × sin α = 2π × p
n
.r.dr

∴  Total axial load transmitted to the clutch or the axial spring force required,

                            

1
1

2
2

2 22
1 2

( ) ( )
2 . . 2 2

2 2

rr

n n n

r
r

r rr
W p r dr p p

   −= π = π = π      
∫

2 2
1 2

( ) ( )n
p r r = π − 

∴ 2 2

1 2
[( ) ( ) ]

n

W
p

r r
=

π − ...(i)
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We know that frictional force on the ring acting tangentially at radius r,

F
r

= µ.δW
n
 = µ.p

n
 × 2 π r.dr.cosec α

∴   Frictional torque acting on the ring,

                                 T
r
 = F

r
 × r = µ.p

n
 × 2 π r.dr. cosec α.r = 2 π µ.p

n
.cosec α.r2 dr

Integrating this expression within the limits from r
2
 to r

1
 for the total frictional torque on the

clutch.

∴  Total frictional torque,

2

1
1

2

3
22 . .cosec . . 2 .cosec

3

rr

n n

r
r

r
T p r dr p

 = πµ α = πµ α   ∫

3 3

1 2
( ) ( )

2 .cosec
3n

r r
p

 −
= π µ α  

 
Substituting the value of p

n
 from equation (i), we get

3 3

1 2

2 2

1 2

( ) ( )
2 cosec

3[( ) ( ) ]

r rW
T

r r

 −
= π µ × × α 

 π −

 

3 3

1 2

2 2

1 2

( ) ( )2
. .cosec

3 ( ) ( )

r r
W

r r

 −
= × µ α  

−  
..(ii)

2.  Considering uniform wear

In Fig. 10.25, let p
r
 be the normal intensity of pressure at a distance r from the axis of the

clutch. We know that, in case of uniform wear, the intensity of pressure varies inversely with the

distance.

∴ p
r
.r = C (a constant)    or    p

r
 = C / r

We know that the normal load acting on the ring,

δW
n

= Normal pressure × Area of ring = p
r 
× 2πr.dr cosec α

and the axial load acting on the ring ,

                            δW = δW
n
 × sin α = p

r
.2 π r.dr.cosec α .sin α = p

r 
× 2 π r.dr

2 . 2 .
C

r dr C dr
r

= × π = π ...(∵  p
r
 = C / r)

∴    Total axial load transmitted to the clutch,

[ ]
1

1

2

2

1 2
2 . 2 2 ( )

r
r

r

r

W C dr C C r rr= π = π = π −∫

or                          
1 2

2 ( )

W
C

r r
=

π −
...(iii)

We know that frictional force acting on the ring,

F
r

= µ.δW
n
 = µ.p

r 
× 2 π r × dr cosec α

and frictional torque acting on the ring,

T
r

= F
r
 × r = µ.p

r 
 × 2 π r.dr.cosec α × r

2
2 . .cosec 2 . cosec

C
r dr C r dr

r
= µ × × π α = πµ α ×
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∴  Total frictional torque acting on the clutch,

 

1
1

2
2

2

2 . .cosec . 2 . .cosec
2

rr

r
r

r
T C r dr C

 = πµ α = πµ α   ∫

2 2

1 2
( ) ( )

2 . .cosec
2

r r
C

 −= πµ α 
 

Substituting the value of C from equation (i), we have

2 2

1 2

1 2

( ) ( )
2 cosec

2 ( ) 2

W r r
T

r r

 −= πµ × × α π −  

1 2. cosec . . cosec
2

r r
W W R

+ = µ α = µ α  
...(iv)

where
1 2

2

r r
R

+
= =  Mean radius of friction surface

Since the normal force acting on the friction surface, W
n
 = W /sin α, therefore the equation

(iv) may be written as

T = µ.W
n
.R ...(v)

The forces on a friction surface, for steady operation of the clutch and after the clutch is

engaged, is shown in Fig. 10.26.

Fig. 10.26. Forces on a friction surface.

From Fig. 10.26 (a), we find that

1 2
1 2 1 2

sin ; and or 2
2

r r
r r b R r r R

+
− = α = + =
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∴   From equation, (i), normal pressure acting on the friction surface,

2 2
1 2 1 21 2

( ) ( ) 2 . .sin[( ) ( ) ]
n

W W W
p

r r r r R br r
= = =

π + − π απ −

or W = p
n
 × 2 π R.b sin α = W

n
 sin α

where W
n

= Normal load acting on the friction surface = p
n
 × 2 π R.b

Now the equation (iv) may be written as,

2( 2 . sin ) cosec 2 . .
n n

T p R b R p R b= µ × π α α = πµ

The following points may be noted for a cone clutch :

1. The above equations are valid for steady operation of the clutch and after the clutch is

engaged.

2. If the clutch is engaged when one member is stationary and the other rotating (i.e. during

engagement of the clutch) as shown in Fig. 10.26 (b), then the cone faces will tend to slide on each

other due to the presence of relative motion. Thus an additional force (of magnitude equal to µ.W
n
.cos α)

acts on the clutch which resists the engagement and the axial force required for engaging the clutch

increases.

∴   Axial force required for engaging the clutch,

W
e

= W  + µ.W
n
 cos α = W

n
 sin α + µ.W

n
 cos α

= W
n
 (sin α + µ cos α)

3. Under steady operation of the clutch, a decrease in the semi-cone angle (α) increases the

torque produced by the clutch (T ) and reduces the axial force (W ). During engaging period, the axial

force required for engaging the clutch (W
e
) increases under the influence of friction as the angle α

decreases. The value of α can not be decreased much because smaller semi-cone angle (α) requires

larger axial force for its disengagement.

For free disengagement of the clutch, the value of tan α must be greater than µ. In case the

value of tan α is less than µ, the clutch will not disengage itself and the axial force required to

disengage the clutch is given by

W
d

= W
n
 (µ cos α – sin α)

Example 10.31. A conical friction clutch is used to transmit 90 kW at 1500 r.p.m. The semi-

cone angle is 20º and the coefficient of friction is 0.2. If the mean diameter of the bearing surface is

375 mm and the intensity of normal pressure is not to exceed 0.25 N/mm2, find the dimensions of the

conical bearing surface and the axial load required.

Solution. Given : P = 90 kW = 90 × 103 W ; N = 1500 r.p.m. or ω = 2 π × 1500/60 = 156

rad/s ; α = 20º ; µ = 0.2 ; D = 375 mm or R = 187.5 mm ; p
n
 = 0.25 N/mm2

Dimensions of the conical bearing surface

Let r
1
 and r

2
= External and internal radii of the bearing surface respectively,

b = Width of the bearing surface in mm, and

T = Torque transmitted.

We know that power transmitted (P),

90 × 103 = T.ω = T × 156

∴ T = 90 × 103/156 = 577 N-m = 577 × 103 N-mm
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and the torque transmitted (T),

577 × 103 = 2 π µ p
n
.R2.b = 2π × 0.2 × 0.25 (187.5)2 b = 11 046 b

∴ b = 577 × 103/11 046 = 52.2 mm  Ans.

We know that r
1
 + r

2
= 2R = 2 × 187.5 = 375 mm ...(i)

and r
1
 – r

2
= b sin α = 52.2 sin 20º = 18 mm ...(ii)

From equations (i) and (ii),

r
1

= 196.5 mm, and r
2
 = 178.5 mm  Ans.

Axial load required

Since in case of friction clutch, uniform wear is considered and the intensity of pressure is

maximum at the minimum contact surface radius (r
2
), therefore

p
n
.r

2
= C (a constant) or C = 0.25 × 178.5 = 44.6 N/mm

We know that the axial load required,

W = 2πC (r
1
 – r

2
) = 2π × 44.6 (196.5 – 178.5) = 5045 N  Ans.

Example 10.32. An engine developing 45 kW at 1000 r.p.m. is fitted with a cone clutch built

inside the flywheel. The cone has a face angle of 12.5º and a maximum mean diameter of 500 mm.

The coefficient of friction is 0.2. The normal pressure on the clutch face is not to exceed 0.1 N/mm2.

Determine : 1. the axial spring force necessary to engage to clutch, and 2. the face width required.

Solution. Given : P = 45 kW = 45 × 103 W ; N = 1000 r.p.m. or ω = 2π × 1000/60 = 104.7

rad/s ; α = 12.5º ; D = 500 mm or R = 250 mm = 0.25 m ; µ = 0.2 ; p
n
 = 0.1 N/mm2

1.  Axial spring force necessary to engage the clutch

First of all, let us find the torque (T ) developed by the clutch and the normal load (W
n
) acting

on the friction surface.

We know that power developed by the clutch (P),

45 × 103 = T.ω = T × 104.7   or   T = 45 × 103/104.7 = 430 N-m

We also know that the torque developed by the clutch (T),

430 = µ.W
n
.R = 0.2 × W

n
 × 0.25 = 0.05 W

n

∴ W
n

= 430/0.05 = 8600 N

and axial spring force necessary to engage the clutch,

W
e

= W
n
 (sin α + µ cos α)

= 8600 (sin 12.5º + 0.2 cos 12.5º) = 3540 N   Ans.

2.  Face width required

Let b = Face width required.

We know that normal load acting on the friction surface (W
n
),

8600 = p
n
 × 2 π R.b = 0.1 × 2π × 250 × b = 157 b

∴ b = 8600/157 = 54.7 mm    Ans.

Example 10.33. A leather faced conical clutch has a cone angle of 30º. If the intensity of

pressure between the contact surfaces is limited to 0.35 N/mm2 and the breadth of the conical surface

is not to exceed one-third of the mean radius, find the dimensions of the contact surfaces to transmit

22.5 kW at 2000 r.p.m. Assume uniform rate of wear and take coefficient of friction as 0.15.

Solution. Given : 2 α = 30º  or  α = 15º  ; p
n
 = 0.35 N/mm2; b = R/3 ; P = 22.5 kW =

22.5 × 103 W ; N = 2000 r.p.m. or ω = 2 π × 2000/60 = 209.5 rad/s ; µ = 0.15

Let r
1

= Outer radius of the contact surface in mm,
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6. In a screw jack, the helix angle of thread is α and the angle of friction is φ. Show that its efficiency is

maximum, when 2α = (90º – φ).

7. For a screw jack having the nut fixed, derive the equation ( with usual notations),

                                                 
tan

.
tan ( ) . .

m
r r

αη =
α + φ + µ

8. Neglecting collar friction, from first principles, prove that the maximum efficiency of a square threaded

screw moving in a nut is 
1 sin

,
1 sin

− φ
+ φ

 where φ is the friction angle.

9. Write a short note on journal bearing.

10. What is meant by the expression ‘friction circle’? Deduce an expression for the radius of friction

circle in terms of the radius of the journal and the angle of friction.

11. From first principles, deduce an expression for the friction moment of a collar thrust bearing, stating

clearly the assumptions made.

12. Derive an expression for the friction moment for a flat collar bearing in terms of the inner radius r
1
,

outer radius r
2
, axial thrust W and coefficient of friction µ. Assume uniform intensity of pressure.

13. Derive from first principles an expression for the friction moment of a conical pivot assuming

(i) Uniform pressure, and (ii) Uniform wear.

14. A truncated conical pivot of cone angle φ rotating at speed N supports a load W . The smallest and

largest diameter of the pivot over the contact area are ‘d’ and ‘D’ respectively. Assuming uniform

wear, derive the expression for the frictional torque.

15. Describe with a neat sketch the working of a single plate friction clutch.

16. Establish a formula for the maximum torque transmitted by a single plate clutch of external and

internal  radii r
1
 and r

2
, if the limiting coefficient of friction is µ and the axial spring load is W . Assume

that the pressure intensity on the contact faces is uniform.

17. Which of the two assumptions-uniform intensity of pressure or uniform rate of wear, would you make

use of in designing friction clutch and why ?

18. Describe with a neat sketch a centrifugal clutch and deduce an equation for the total torque transmitted.

OBJECTIVE TYPE QUESTIONS

1. The angle of inclination of the plane, at which the body begins to move down the plane, is called

(a) angle of friction (b) angle of repose (c) angle of projection

2. In a screw jack, the effort required to lift the load W is given by

(a) P = W tan (α – φ) (b) P = W tan (α + φ)

(c) P = W cos (α – φ) (d) P = W cos (α + φ)

where α = Helix angle, and

φ = Angle of friction.

3. The efficiency of a screw jack is given by

(a)
tan ( )

tan

α + φ
α (b)

tan

tan ( )

α
α + φ

(c)
tan ( )

tan

α − φ
α (d)

tan

tan ( )

α
α − φ

4. The radius of a friction circle for a shaft of radius r rotating inside a bearing is

(a) r sin φ (b) r cos φ (c) r tan φ (d) r cot φ
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5. The efficiency of a screw jack is maximum, when

(a) 45º
2

φα = + (b) 45º
2

φα = − (c) 90ºα = +φ (d) 90ºα = −φ

6. The maximum efficiency of a screw jack is

(a)
1 sin

1 sin

− φ
+ φ (b)

1 sin

1 sin

+ φ
− φ (c)

1 tan

1 tan

− φ
+ φ (d)

1 tan

1 tan

+ φ
− φ

7. The frictional torque transmitted in a  flat pivot bearing, considering uniform pressure, is

(a)
1

. .
2

W R× µ (b)
2

. .
3

W R× µ (c)
3

. .
4

W R× µ (d)
. .W Rµ

where µ = Coefficient of friction,

W  = Load over the bearing, and

R = Radius of the bearing surface.

8. The frictional torque transmitted in a conical pivot bearing, considering uniform wear, is

(a)
1

. . cosec
2

W R× µ α (b)
2

. . cosec
3

W R× µ α

(c)
3

. . cosec
4

W R× µ α (d) µ . W.R cosec α

where R = Radius of the shaft, and

α = Semi-angle of the cone.

9. The frictional torque transmitted by a disc or plate clutch is same as that of

(a) flat pivot bearing (b) flat collar bearing

(c) conical pivot bearing (d) trapezoidal pivot bearing

10. The frictional torque transmitted by a cone clutch is same as that of

(a) flat pivot bearing (b) flat collar bearing

(c) conical pivot bearing (d) trapezoidal pivot bearing

ANSWERS
1. (a) 2. (b) 3. (b) 4. (a) 5. (b)

6. (a) 7. (b) 8. (a) 9. (b) 10. (d)

GO To FIRST
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11.1. Introduction

The belts or ropes are used to transmit power from

one shaft to another by means of pulleys which rotate at the

same speed or at different speeds. The amount of power trans-

mitted depends upon the following factors :

1. The velocity of the belt.

2. The tension under which the belt is placed on the

pulleys.

3. The arc of contact between the belt and the smaller

pulley.

4. The conditions under which the belt is used.

It may be noted that

(a) The shafts should be properly in line to insure

uniform tension across the belt section.

(b) The pulleys should not be too close together, in

order that the arc of contact on the smaller pul-

ley may be as large as possible.

(c) The pulleys should not be so far apart as to cause

the belt to weigh heavily on the shafts, thus in-

creasing the friction load on the bearings.
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(d) A long belt tends to swing from side to side, causing the belt to run out of the pulleys,

which in turn develops crooked spots in the belt.

(e) The tight side of the belt should be at the bottom, so that whatever sag is present on the

loose side will increase the arc of contact at the pulleys.

( f ) In order to obtain good results with flat belts, the maximum distance between the shafts

should not exceed 10 metres and the minimum should not be less than 3.5 times the

diameter of the larger pulley.

11.2. Selection of a Belt Drive

Following are the various important factors upon which the selection of a belt drive depends:

1. Speed of the driving and driven shafts, 2. Speed reduction ratio,

3. Power to be transmitted, 4. Centre distance between the shafts,

5. Positive drive requirements, 6.  Shafts layout,

7. Space available, and 8. Service conditions.

11.3. Types of Belt Drives

The belt drives are usually classified into the following three groups :

1.  Light drives. These are used to transmit small powers at belt speeds upto about 10 m/s, as

in agricultural machines and small machine tools.

2.  Medium drives. These are used to transmit medium power at belt speeds over 10 m/s but

up to 22 m/s, as in machine tools.

3.  Heavy drives. These are used to transmit large powers at belt speeds above 22 m/s, as in

compressors and generators.

11.4. Types of Belts

(a)  Flat belt. (b)  V-belt. (c)  Circular belt.

Fig. 11.1. Types of belts.

Though there are many types of belts used these days, yet the following are important from

the subject point of view :

1.  Flat belt. The flat belt, as shown in Fig. 11.1 (a), is mostly used in the factories and

workshops, where a moderate amount of power is to be transmitted, from one pulley to another when

the two pulleys are not more than 8 metres apart.

2.  V-belt. The V-belt, as shown in Fig. 11.1 (b), is mostly used in the factories and work-

shops, where a moderate amount of power is to be transmitted, from one pulley to another, when the

two pulleys are very near to each other.

3.  Circular belt or rope. The circular belt or rope, as shown in Fig. 11.1 (c), is mostly used

in the factories and workshops, where a great amount of power is to be transmitted, from one pulley

to another, when the two pulleys are more than 8 meters apart.
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If a huge amount of power is to be transmitted, then a single belt may not be sufficient. In

such a case, wide pulleys (for V-belts or circular belts) with a number of grooves are used. Then a belt

in each groove is provided to transmit the required amount of power from one pulley to another.

11.5. Material used for Belts

The material used for belts and ropes must be strong, flexible, and durable. It must have a

high coefficient of friction. The belts, according to the material used, are classified as follows :

1.  Leather belts. The most important material for the belt is leather. The best leather belts are

made from 1.2 metres to 1.5 metres long strips cut from either side of the back bone of the top grade

steer hides. The hair side of the leather is smoother and harder than the flesh side, but the flesh side is

stronger. The fibres on the hair side are perpendicular to the surface, while those on the flesh side are

interwoven and parallel to the surface. Therefore for these reasons, the hair side of a belt should be in

contact with the pulley surface, as shown in Fig. 11.2. This gives a more intimate contact between the

belt and the pulley and places the greatest tensile strength of the belt section on the outside, where the

tension is maximum as the belt passes over the pulley.

(a)  Single layer belt. (b)  Double layer belt.

Fig. 11.2.  Leather belts.

The leather may be either oak-tanned or mineral salt tanned e.g. chrome tanned. In order to

increase the thickness of belt, the strips are cemented together. The belts are specified according to

the number of layers e.g. single, double or triple ply and according to the thickness of hides used e.g.

light, medium or heavy.

The leather belts must be periodically cleaned and dressed or treated with a compound or

dressing containing neats foot or other suitable oils so that the belt will remain soft and flexible.

2.  Cotton or fabric belts. Most of the fabric belts are made by folding canvass or cotton duck

to three or more layers (depending upon the thickness desired) and stitching together. These belts are

woven also into a strip of the desired width and thickness. They are impregnated with some filler like

linseed oil in order to make the belts water proof and to prevent injury to the fibres. The cotton belts

are cheaper and suitable in warm climates, in damp atmospheres and in exposed positions. Since the

cotton belts require little attention, therefore these belts are mostly used in farm machinery, belt

conveyor etc.

3.  Rubber belt. The rubber belts are made of layers of fabric impregnated with rubber com-

position and have a thin layer of rubber on the faces. These belts are very flexible but are quickly

destroyed if allowed to come into contact with heat, oil or grease. One of the principal advantage of

these belts is that they may be easily made endless. These belts are found suitable for saw mills, paper

mills where they are exposed to moisture.

4.  Balata belts. These belts are similar to rubber belts except that balata gum is used in place

of rubber. These belts are acid proof and water proof and it is not effected by animal oils or alkalies.

The balata belts should not be at temperatures above 40° C because at this temperature the balata

begins to soften and becomes sticky. The strength of balata belts is 25 per cent higher than rubber

belts.
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11.6. Types of Flat Belt Drives

The power from one pulley to another may be transmitted by any of the following types of

belt drives:

1.  Open belt drive. The open belt drive, as shown in Fig. 11.3, is used with shafts arranged

parallel and rotating in the same direction. In this case, the driver A  pulls the belt from one side (i.e.

lower side RQ) and delivers it to the other side (i.e. upper side LM). Thus the tension in the lower side

belt will be more than that in the upper side belt. The lower side belt (because of more tension) is

known as tight side whereas the upper side belt (because of less tension) is known as slack side, as

shown in Fig. 11.3.

Fig. 11.3.  Open belt drive.

2.  Crossed or twist belt drive. The crossed or twist belt drive, as shown in Fig. 11.4, is used

with shafts arranged parallel and rotating in the opposite directions.

Fig. 11.4.  Crossed or twist belt drive.

In this case, the driver pulls the belt from one side (i.e. RQ) and delivers it to the other side

(i.e. LM). Thus the tension in the belt RQ will be more than that in the belt LM. The belt RQ (because

of more tension) is known as tight side, whereas the belt LM (because of less tension) is known as

slack side, as shown in Fig. 11.4.
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A little consideration will show that at a point where the belt crosses, it rubs against each

other and there will be excessive wear and tear. In order to avoid this, the shafts should be placed at

a maximum distance of 20 b, where b is the width of belt and the speed of the belt should be less than

15 m/s.

3.  Quarter turn belt drive. The quarter turn belt drive also known as right angle belt drive, as

shown in Fig. 11.5 (a), is used with shafts arranged at right angles and rotating in one definite direc-

tion. In order to prevent the belt from leaving the pulley, the width of the face of the pulley should be

greater or equal to 1.4 b, where b is the width of belt.

In case the pulleys cannot be arranged, as shown in Fig. 11.5 (a), or when the reversible

motion is desired, then a quarter turn belt drive with guide pulley, as shown in Fig. 11.5 (b), may be

used.

(a)  Quarter turn belt drive. (b)  Quarter turn belt drive with guide pulley.

Fig. 11.5

4.  Belt drive with idler pulleys. A belt drive with an idler pulley, as shown in Fig. 11.6 (a), is

used with shafts arranged parallel and when an open belt drive cannot be used due to small angle of

contact on the smaller pulley. This type of drive is provided to obtain high velocity ratio and when the

required belt tension cannot be obtained by other means.

(a)  Belt drive with single idler pulley. (b)  Belt drive with many idler pulleys.

Fig. 11.6

When it is desired to transmit motion from one shaft to several shafts, all arranged in parallel,

a belt drive with many idler pulleys, as shown in Fig. 11.6 (b), may be employed.
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Fig. 11.9.  Fast and loose pulley drive.

5.  Compound belt drive. A compound belt drive, as shown in Fig. 11.7, is used when power

is transmitted from one shaft to another through a number of pulleys.

Fig.  11.7.  Compound belt brive.

6.  Stepped or cone pulley drive. A stepped or cone pulley drive, as shown in Fig. 11.8, is

used for changing the speed of the driven shaft while the main or driving shaft runs at constant speed.

This is accomplished by shifting the belt from one part of the steps to the other.

7.  Fast and loose pulley drive. A fast and loose pulley drive, as shown in Fig. 11.9, is used

when the driven or machine shaft is to be started or stopped when ever desired without interfering

with the driving shaft. A pulley which is keyed to the machine shaft is called fast pulley and runs at

the same speed as that of machine shaft. A loose pulley runs freely over the machine shaft and is

incapable of transmitting any power. When the driven shaft is required to be stopped, the belt is

pushed on to the loose pulley by means of sliding bar having belt forks.

Fig. 11.8.  Stepped or cone pulley drive.

11.7. Velocity Ratio of Belt Drive

It is the ratio between the velocities of the driver and the follower or driven. It may be

expressed, mathematically, as discussed below :

Let d1 = Diameter of the driver,

d2 = Diameter of the follower,
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N
1

= Speed of the driver in r.p.m., and

N
2

= Speed of the follower in r.p.m.

∴   Length of the belt that passes over the driver, in one minute

= π d
1
.N

1

Similarly, length of the belt that passes over the

follower, in one minute

= π d
2 

. N
2

Since the length of belt that passes over the

driver in one minute is equal to the length of belt that

passes over the follower in one minute, therefore

π d
1 

. N
1

= π d
2
 . N

2

∴  Velocity ratio, 2 1

1 2

N d

N d
=

When the thickness of the belt (t) is considered,

then velocity ratio,

 
2 1

1 2

N d t

N d t

+=
+

Note: The velocity ratio of a belt drive may also be obtained as discussed below :

We know that peripheral velocity of the belt on the driving pulley,

1 1
1

.
m/s

60

π= d N
v

and peripheral velocity of the belt on the driven or follower pulley,

 
2 2

2

.
m/s

60

d N
v

π=

When there is no slip, then v
1
 = v

2
.

∴  
1 1 2 2. .

60 60

d N d Nπ π= or
2 1

1 2

N d

N d
=

11.8.11.8.11.8.11.8.11.8. VVVVVelocity Raelocity Raelocity Raelocity Raelocity Ratio of a Compound Belt Drtio of a Compound Belt Drtio of a Compound Belt Drtio of a Compound Belt Drtio of a Compound Belt Driviviviviveeeee

Sometimes the power is transmitted from one shaft to another, through a number of pulleys as

shown in Fig. 11.7. Consider a pulley 1 driving the pulley 2. Since the pulleys 2 and 3 are keyed to the

same shaft, therefore the pulley 1 also drives the pulley 3 which, in turn, drives the pulley 4.

Let d
1

= Diameter of the pulley 1,

N
1

= Speed of the pulley 1 in r.p.m.,

d
2
, d

3
, d

4
, and N

2
, N

3
, N

4
= Corresponding values for pulleys 2, 3 and 4.

We know that velocity ratio of pulleys 1 and 2,

                                
2 1

1 2

N d

N d
= ...(i)

Similarly, velocity ratio of pulleys 3 and 4,

                                
34

3 4

dN

N d
= ...(ii)

Multiplying equations (i) and (ii),

                      
32 4 1

1 3 2 4

dN N d

N N d d
× = ×
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or                         
1 34

1 2 4

d dN

N d d

×
=

× ...(∵ N
2
 = N

3
, being keyed to the same shaft)

A little consideration will show, that if there are six pulleys, then

                                
6 1 3 5

1 2 4 6

N d d d

N d d d

× ×
=

× ×

or               
Speed of last driven Product of diameters of drivers

Speed of first driver Product of diameters of drivens
=

11.9. Slip of Belt

In the previous articles, we have discussed the motion

of belts and shafts assuming a firm frictional grip between the

belts and the shafts. But sometimes, the frictional grip becomes

insufficient. This may cause some forward motion of the driver

without carrying the belt with it. This may also cause some

forward motion of the belt without carrying the driven pulley

with it. This is called slip of the belt and is generally expressed

as a percentage.

The result of the belt slipping is to reduce the velocity

ratio of the system. As the slipping of the belt is a common

phenomenon, thus the belt should never be used where a

definite velocity ratio is of importance (as in the case of hour,

minute and second arms in a watch).

Let s
1 

% = Slip between the

driver and the belt, and

s
2 

% = Slip between the belt and the follower.

∴    Velocity of the belt passing over the driver per second

                                     
1 1 1 1 1 1 1 1. . .

– 1 –
60 60 100 60 100

d N d N s d N s
v

π π π  = × =   
...(i)

and velocity of the belt passing over the follower per second,

                          
2 2 2 2.

– 1 –
60 100 100

d N s s
v v v

π  = × =   
Substituting the value of v from equation (i),

                          
2 2 1 1 1 21 – 1 –
60 60 100 100

d N d N s sπ π    =       

                                 
2 1 1 2

1 2

1 – –
100 100

N d s s

N d

 =   
1 2... Neglecting 

100 100

s s ×
 × 

                                        
1 1 2 1

2 2

1 – 1 –
100 100

d s s d s

d d

+   = =      
... (where s = s

1
 + s

2
, i.e. total percentage of slip)

If thickness of the belt (t) is considered, then

                                 
2 1

1 2

1 –
100

N d t s

N d t

+  =  +  
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Example 11.1. An engine, running at 150 r.p.m., drives a line shaft by means of a belt. The

engine pulley is 750 mm diameter and the pulley on the line shaft being 450 mm. A 900 mm diameter

pulley on the line shaft drives a 150 mm diameter pulley keyed to a dynamo shaft. Find the speed of

the dynamo shaft, when 1. there is no slip, and 2. there is a slip of 2% at each drive.

Solution. Given : N
1
 = 150 r.p.m. ; d

1
 = 750 mm ; d

2
 = 450 mm ; d

3
 = 900 mm ; d

4
 = 150 mm

The arrangement of belt drive is shown in Fig. 11.10.

Let N
4

= Speed of the dynamo shaft .

Fig. 11.10

1. When there is no slip

We know that 1 34

1 2 4

d dN

N d d

×
=

×
         or   4 750 900

10
150 450 150

N ×= =
×

∴ N
4

= 150 × 10 = 1500 r.p.m.  Ans.

2. When there is a slip of 2% at each drive

We know that        
1 34 1 2

1 2 4

1 – 1 –
100 100

d dN s s

N d d

×    =    ×    

                            
4 750 900 2 2

1 – 1 – 9.6
150 450 150 100 100

N ×    = =   ×    

∴ N
4

= 150 × 9.6 = 1440 r.p.m.  Ans.

11.10. Creep of Belt

When the belt passes from the slack side to the tight side, a certain portion of the belt extends

and it contracts again when the belt passes from the tight side to slack side. Due to these changes of

length, there is a relative motion between the belt and the pulley surfaces. This relative motion is

termed as creep. The total effect of creep is to reduce slightly the speed of the driven pulley or

follower. Considering creep, the velocity ratio is given by

                             
22 1

1 2 1

EN d

N d E

+ σ
= ×

+ σ

where                   σ
1
 and σ

2
= Stress in the belt on the tight and slack side respectively, and

E = Young’s modulus for the material of the belt.
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Example 11.2. The power is transmitted from a pulley 1 m diameter running at 200 r.p.m. to

a pulley 2.25 m diameter by means of a belt. Find the speed lost by the driven pulley as a result of

creep, if the stress on the tight and slack side of the belt is 1.4 MPa and 0.5 MPa respectively. The

Young’s modulus for the material of the belt is 100 MPa.

Solution.  Given : d
1
 = 1 m ; N

1
 = 200 r.p.m. ; d

2
 = 2.25 m ; σ

1
 = 1.4 MPa = 1.4 × 106 N/m2;

σ
2
 = 0.5 MPa = 0.5 × 106 N/m2 ; E = 100 MPa = 100 × 106 N/m2

Let N
2

= Speed of the driven pulley.

Neglecting creep, we know that

                              2 1

1 2

N d

N d
=   or  1

2 1

2

1
200 88.9 r.p.m.

2.25

d
N N

d
= × = × =

Considering creep, we know that

                             
22 1

1 2 1

EN d

N d E

+ σ
= ×

+ σ

or                                         
6 6

2
6 6

100 10 0.5 101
200 88.7 r.p.m.

2.25 100 10 1.4 10
N

× + ×
= × × =

× + ×
∴    Speed lost by driven pulley due to creep

= 88.9 – 88.7 = 0.2 r.p.m.  Ans.

11.11. Length of an Open Belt Drive

Fig. 11.11.  Length of an open belt drive.

We have already discussed in Art. 11.6 that in an open belt drive, both the pulleys rotate in the

same direction as shown in Fig. 11.11.

Let r
1
 and r

2
= Radii of the larger and smaller pulleys,

x = Distance between the centres of two pulleys (i.e. O
1
 O

2
), and

L = Total length of the belt.

Let the belt leaves the larger pulley at E and G and the smaller pulley at F and H as shown in

Fig. 11.11. Through O
2
, draw O

2 
M parallel to FE.

From the geometry of the figure, we find that O
2 

M will be perpendicular to O
1 

E.

Let the angle MO
2
 O

1
= α radians.
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2
3 3

3 3

(2 – )
( 2 ) 2 720

720

r r
r r= π + + + ×

            = 9.426 r
3
 + 0.0014 (r

3
)2 + 1440

or      0.0014 (r3)
2 + 9.426 r3 – 467 = 0

∴       

2

3

– 9.426 (9.426) 4 0.0014 467

2 0.0014
r

± + × ×
=

×

             
– 9.426 9.564

= 49.3 mm
0.0028

±=  Ans. ...(Taking +ve sign)

and               r
4
 =  2 r

3
 = 2 × 49.3 = 98.6 mm  Ans.

Now for pulleys 5 and 6,

      6 5

5 6

N r

N r
=   or

          5
6 5 5 5

6

160
1.6

100

N
r r r r

N
= × = × =

and length of the belt (L),

                 

2
6 5

5 6

( – )
1907 ( ) 2

r r
r r x

x
= π + + +

                          

2
5 5

5 5

(1.6 – )
( 1.6 ) 2 720

720

r r
r r= π + + + ×

                        = 8.17 r
5
 + 0.0005 (r

5
)2 + 1440

or       0.0005 (r
5
)2 + 8.17 r

5
 – 467 = 0

∴             

2

5

–8.17 (8.17) 4 0.0005 467

2 0.0005
r

± + × ×
=

×

                         
–8.17 8.23

= 60 mm
0.001

±=  Ans.

...(Taking +ve sign)

and r
6

= 1.6 r
5
 = 1.6 × 60 = 96 mm Ans.

11.13. Power Transmitted by a Belt

Fig. 11.14 shows the driving pulley (or driver) A  and the driven pulley (or follower) B. We

have already discussed that the driving pulley pulls the belt from one side and delivers the same to the

other side. It is thus obvious that the tension on the former side (i.e. tight side) will be greater than the

latter side (i.e. slack side) as shown in Fig. 11.14.

Let T
1
 and T

2
= Tensions in the tight and slack side of the belt respectively in

newtons,

Milling machine is used for dressing

surfaces by rotary cutters.

Note : This picture is given as additional

information and is not a direct example of the

current chapter.
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r
1
 and r

2
= Radii of the driver and follower respectively, and

v = Velocity of the belt in m/s.

Fig. 11.14.  Power transmitted by a belt.

The effective turning (driving) force at the  circumference of the follower is the difference

between the two  tensions (i.e. T
1
 – T

2
).

∴   Work done per second = (T
1
 – T

2
) v N-m/s

and power transmitted,        P = (T
1
 – T

2
) v W ...(∵ 1 N-m/s = 1 W)

A little consideration will show that the torque exerted on the driving pulley is (T
1
 – T

2
) r

1
.

Similarly, the torque exerted on the driven pulley i.e. follower is (T
1
 – T

2
) r

2
.

11.14. Ratio of Driving Tensions For Flat Belt Drive

Consider a driven pulley rotating in the clockwise direction as shown in Fig. 11.15.

Fig. 11.15.  Ratio of driving tensions for flat belt.

Let T
1

= Tension in the belt on the tight side,

T
2

= Tension in the belt on the slack side, and

θ = Angle of contact in radians (i.e. angle subtended by the arc A B, along

which the belt touches the pulley at the centre).

Now consider a small portion of the belt PQ, subtending an angle δθ at the centre of the

pulley as shown in Fig. 11.15. The belt PQ is in equilibrium under the following forces :

1. Tension T in the belt at P,

2. Tension (T + δ T) in the belt at Q,

3. Normal reaction R
N

, and

4. Frictional force, F = µ × R
N

 , where µ is the coefficient of friction between the belt and

pulley.
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Resolving all the forces horizontally and equating the same,

N ( ) sin sin
2 2

R T T T
δθ δθ= + δ + ...(i)

Since the angle δθ is very small, therefore putting sin δ θ / 2 = δθ / 2 in equation (i),

N

. . .
( ) .

2 2 2 2 2

T T T
R T T T T

δθ δθ δθ δ δθ δθ
= + δ + × = + + = δθ ...(ii)

.
... Neglecting

2

Tδ δθ 
  

Now resolving the forces vertically, we have

N ( ) cos – cos
2 2

R T T T
δθ δθµ × = + δ ...(iii)

Since the angle δ θ is very small, therefore putting cos δ θ / 2 = 1 in equation (iii),

µ × R
N

  = T + δT – T = δT  or  N

T
R

δ=
µ

...(iv)

Equating the values of R
N

 from equations (ii) and (iv),

.
T

T
δδθ =
µ

  or  .
T

T

δ
= µ δθ

Integrating both sides between the limits T
2
 
 
and T

1
 and from 0 to θ respectively,

i.e.
1

2 0

T

T

T

T

θδ = µ δθ∫ ∫                   or       1

2

log .e

T

T

 
= µ θ 

 
  or  .1

2

T
e

T

µ θ= ...(v)

Equation (v) can be expressed in terms of corresponding logarithm to the base 10, i.e.

1

2

2.3log .
T

T

 
= µ θ 

 
The above expression gives the relation between the tight side and slack side tensions, in terms

of coefficient of friction and the angle of contact.

11.15. Determination of Angle of Contact

When the two pulleys of different diameters are connected by means of an open belt as

shown in Fig. 11.16 (a), then the angle of contact or lap (θ) at the smaller pulley must be taken into

consideration.

Let r1 = Radius of larger pulley,

r2 = Radius of smaller pulley, and

x = Distance between centres of two pulleys (i.e. O1 O2).

From Fig. 11.16 (a),

1 1 1 2

1 2 1 2

– –
sin

O M O E ME r r

O O O O x
α = = = ...(∵ ME = O

2
 F = r

2
)

∴  Angle of contact or lap,

(180 – 2 ) rad
180

πθ = ° α
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A little consideration will show that when the two pulleys are connected by means of a crossed

belt as shown in Fig. 11.16 (b), then the angle of contact or lap (θ) on both the pulleys is same. From

Fig. 11.16 (b),

1 1 1 2

1 2 1 2

sin
O M O E ME r r

O O O O x

+ +α = = =

∴  Angle of contact or lap, (180 2 ) rad
180

πθ = °+ α

(a) Open belt drive.

(b)  Crossed belt drive.

Fig. 11.16

Example 11.4. Find the power transmitted by a belt running over a pulley of 600 mm

diameter at 200 r.p.m. The coefficient of friction between  the belt and the pulley is 0.25, angle of lap

160° and maximum tension in the belt is 2500 N.

Solution. Given : d = 600 mm = 0.6 m ; N = 200 r.p.m. ; µ = 0.25 ; θ = 160° = 160 × π / 180

= 2.793 rad ; T
1
 = 2500 N

We know that velocity of the belt,

. 0.6 200
6.284 m/s

60 60

d N
v

π π× ×= = =

Let T
2

= Tension in the slack side of the belt.

We know that 1

2

2.3log . 0.25 2.793 0.6982
T

T

 
= µ θ = × = 

 
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1

2

0.6982
log 0.3036

2.3

T

T

 
= = 

 

∴
1

2

2.01
T

T
= ...(Taking antilog of 0.3036)

and
1

2

2500
1244 N

2.01 2.01

T
T = = =

We know that power transmitted by the belt,

P = (T
1
 – T

2
) v = (2500 – 1244) 6.284 = 7890 W

= 7.89 kW  Ans.

Example 11.5. A casting weighing 9 kN hangs freely from a rope which makes 2.5 turns

round a drum of 300 mm diameter revolving at 20 r.p.m. The other end of the rope is pulled by a man.

The coefficient of friction is 0.25. Determine 1. The force required by the man, and 2. The power to

raise the casting.

Solution. Given : W  = T
1
 = 9 kN = 9000 N ; d = 300 mm = 0.3 m ; N = 20 r.p.m. ; µ = 0.25

1.  Force required by the man

Let T
2

= Force required by the man.

Since the rope makes 2.5 turns round the drum, therefore angle of contact,

θ = 2.5 × 2 π = 5 π rad

Another model of milling machine.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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We know that 1

2

2.3log . 0.25 5 3.9275
T

T

 
= µ θ = × π = 

 

1

2

3.9275
log 1.71

2.3

T

T

 
= = 

 
  or  

1

2

51
T

T
=

...(Taking antilog of 1.71)

∴ 1
2

9000
= 176.47 N

51 51

T
T = =  Ans.

2.  Power to raise the casting

We know that velocity of the rope,

. 0.3 20
0.3142 m/s

60 60

d N
v

π π× ×= = =

∴   Power to raise the casting,

P = (T
1
 – T

2
) v = (9000 – 176.47) 0.3142 = 2772 W

= 2.772 kW   Ans.

Example 11.6. Two pulleys, one 450 mm diameter  and the other 200 mm diameter are on

parallel shafts 1.95 m apart and are connected by a crossed belt. Find the length of the belt required

and the angle of contact between the belt and each pulley.

What power can be transmitted by the belt when the larger pulley rotates at 200 rev/min, if

the maximum permissible tension in the belt is 1 kN, and the coefficient of friction between the belt

and pulley is 0.25 ?

Solution. Given : d
1
 = 450 mm = 0.45 m or r

1
 = 0.225 m ; d

2
 = 200 mm = 0.2 m or

r
2
 = 0.1 m ; x = 1.95 m ; N

1
 = 200 r.p.m. ; T

1
 = 1 kN = 1000 N ; µ = 0.25

We know that speed of the belt,

1 1. 0.45 200
4.714 m/s

60 60

d N
v

π π × ×= = =

Length of the belt

We know that length of the crossed belt,

2
1 2

1 2

( )
( ) 2

r r
L r r x

x

+= π + + +

2
(0.225 0.1)

(0.225 0.1) 2 1.95 4.975m
1.95

+= π + + × + =  Ans.

Angle of contact between the belt and each pulley

Let θ = Angle of contact between the belt and each pulley.

We know that for a crossed belt drive,

1 2 0.225 0.1
sin 0.1667

1.95

r r

x

+ +α = = =   or   α = 9.6°

∴ θ = 180° + 2 α = 180° + 2 × 9.6° = 199.2°

199.2 3.477 rad
180

π= × = Ans.
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Power transmitted

Let T
2

= Tension in the slack side of the belt.

We know that

1

2

2.3 log . 0.25 3.477 0.8692
T

T

 
= µ θ = × = 

 

1

2

0.8692
log 0.378

2.3

T

T

 
= = 

 
  or  1

2

2.387
T

T
= ...(Taking antilog of 0.378)

∴ 1
2

1000
419 N

2.387 2.387

T
T = = =

We know that power transmitted,

P = (T
1
 – T

2
) v = (1000 – 419) 4.714 = 2740 W = 2.74 kW  Ans.

11.16. Centrifugal Tension

Since the belt continuously runs over the pulleys, there-

fore, some centrifugal force is caused, whose effect is to increase

the tension on both, tight as well as the slack sides. The tension

caused by centrifugal force is called centrifugal tension. At lower

belt  speeds (less than 10 m/s), the centrifugal tension is very

small, but at higher belt speeds (more than 10 m/s), its effect is

considerable and thus should be taken into

account.

Consider a small portion PQ of the belt

subtending an angle dθ the centre of the pulley as shown in Fig.

11.17.

Let m = Mass of the belt per unit length in kg,

v = Linear velocity of the belt in m/s,

r = Radius of the pulley over which the belt runs in metres, and

T
C

= Centrifugal tension acting tangentially at P and Q in newtons.

We know that length of the belt PQ

= r. dθ
and mass of the belt PQ                       = m. r. dθ

∴  Centrifugal force acting on the belt PQ,
2

2
C ( . . ) . .

v
F m r d m d v

r
= θ = θ

The centrifugal tension T
C
 acting tangentially at P and Q keeps the belt in equilibrium.

Now resolving the forces (i.e. centrifugal force and centrifugal tension) horizontally and

equating the same, we have

2

C C Csin sin . .
2 2

d d
T T F m d v

θ θ   + = = θ      

Since the angle dθ is very small, therefore, putting sin ,
2 2

d dθ θ  =  
 in the above expression,

Fig. 11.17.  Centrifugal tension.
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2
C2 . .

2

d
T m d v

θ  = θ  
  or   T

C
 = m . v2

Notes : 1. When the centrifugal tension is taken into account, then total tension in the tight side,

T
t1

= T
1
 + T

C

and total tension in the slack side,

T
t2

= T
2
 + T

C

             2.   Power transmitted, P = (T
t1

 – T
t2

) v ...(in watts)

= [(T
1
 + T

C
) – (T

2
 + T

C
)] v = (T

1
 – T

2
) v ...(same as before)

Thus we see that centrifugal tension has no effect on the power transmitted.

            3.   The ratio of driving tensions may also be written as

1 C

2 C

–
2.3log .

–

t

t

T T

T T

 
= µ θ 

 
where T

t1
= Maximum or total tension in the belt.

11.17. Maximum Tension in the Belt

A little consideration will show that the maximum tension in the belt (T) is equal to the total

tension in the tight side of the belt (T
t1

).

Let σ = Maximum safe stress in N/mm2,

b = Width of the belt in mm, and

t = Thickness of the belt in mm.

We know that maximum tension in the belt,

T = Maximum stress × cross-sectional area of belt = σ. b. t

When centrifugal tension is neglected, then

T (or T
t1

) = T
1
, i.e. Tension in the tight side of the belt

and when centrifugal tension is considered, then

T (or T
t1

) = T
1
 + T

C

11.18. Condition For the Transmission of Maximum Power

We know that power transmitted by a belt,

P = (T
1
 – T

2
) v ...(i)

where T
1

= Tension in the tight side of the belt in newtons,

T
2

= Tension in the slack side of the belt in newtons, and

v = Velocity of the belt in m/s.

From Art. 11.14, we have also seen that the ratio of driving tensions is

.1

2

T
e

T

µ θ=   or  1
2 .

T
T

eµ θ= ...(ii)

Substituting the value of T
2
 in equation (i),

1
1 1 1. .

1
– 1 – . .

T
P T v T v T v C

e e
µ θ µ θ

   = = =     
...(iii)
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where
.

1
1 –C

eµ θ=

We know that T1 = T – TC

where T = Maximum tension to which the belt can be subjected in

newtons, and

TC = Centrifugal tension in newtons.

Substituting the value of T1 in equation (iii),

P = (T – TC) v.C

= (T – m.v2) v.C = (T.v – m v3) C ... (Substituting T
C
 = m. v2)

For maximum power, differentiate the above expression with respect to v and equate to zero,

i.e.

0
dP

dv
=          or          3( . – ) 0

d
T v mv C

dv
=

∴ T – 3 m . v2 = 0

or T – 3 T
C

= 0  or  T = 3 T
C

...(iv)

It shows that when the power transmitted is maximum, 1/3rd of the maximum tension is

absorbed as centrifugal tension.

Notes :  1.  We know that T
1
 = T– T

C
 and for maximum power, C

3

T
T = .

∴
1

2
–

3 3

T T
T T= =

              2.  From equation (iv), the velocity of the belt for the maximum power,

3

T
v

m
=

Example. 11.7. A shaft rotating at 200 r.p.m. drives another shaft at 300 r.p.m. and transmits

6 kW through a belt. The belt is 100 mm wide and 10 mm thick. The distance between the shafts is 4m.

The smaller pulley is 0.5 m in diameter. Calculate the stress in the belt, if it is 1. an open belt drive,

and 2. a cross belt drive. Take µ = 0.3.

Solution. Given : N
1
 = 200 r.p.m. ; N

2
 = 300 r.p.m. ; P = 6 kW = 6 × 103 W ; b = 100 mm ;

t = 10 mm ; x = 4 m ; d
2
 = 0.5 m ; µ = 0.3

Let σ = Stress in the belt.

1.  Stress in the belt for an open belt drive

First of all, let us find out the diameter of larger pulley (d
1
). We know that

2 1

1 2

N d

N d
=   or  2 2

1

1

. 300 0.5
0.75m

200

N d
d

N

×= = =

and velocity of the belt,
2 2. 0.5 300

7.855 m/s
60 60

d N
v

π π × ×= = =

Now let us find the angle of contact on the smaller pulley. We know that, for an open belt

drive,

1 2 1 2– – 0.75 – 0.5
sin 0.03125

2 2 4

r r d d

x x
α = = = =

×
  or  α = 1.8°
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∴   Angle of contact, θ = 180° – 2 α = 180 – 2 × 1.8 = 176.4°

= 176.4 × π / 180 = 3.08 rad

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.

We know that

1

2

2.3log . 0.3 3.08 0.924
T

T

 
= µ θ = × = 

 

∴ 1

2

0.924
log 0.4017

2.3

T

T

 
= = 

 
  or  1

2

2.52
T

T
= ...(i)

...(Taking antilog of 0.4017)

We also know that power transmitted (P),

6 × 103 = (T
1 

– T
2
) v = (T

1
 – T

2
) 7.855

∴ T
1
 – T

2
= 6 × 103 / 7.855 = 764 N ...(ii)

From equations (i) and (ii),

T1 = 1267 N, and T2 = 503 N

We know that maximum tension in the belt (T
1
),

1267 = σ . b. t = σ × 100 × 10 = 1000 σ
∴ σ = 1267 / 1000 = 1.267 N/mm2 = 1.267 MPa  Ans.

...[∵ 1 MPa = 1 MN/m2 = 1 N/mm2]

Stress in the belt for a cross belt drive

We know that for a cross belt drive,

1 2 1 2 0.75 0.5
sin 0.1562

2 2 4

r r d d

x x

+ + +α = = = =
×

  or  α = 9°

∴   Angle of contact, θ = 180° + 2α = 180 + 2 × 9 = 198°

= 198 × π / 180 = 3.456 rad

We know that

1

2

2.3log . 0.3 3.456 1.0368
T

T

 
= µ θ = × = 

 

1

2

1.0368
log 0.4508

2.3

T

T

 
= = 

 
  or  1

2

2.82
T

T
= ...(iii)

...(Taking antilog of 0.4508)

From equations (ii) and (iii),

T
1

= 1184 N and T
2
 = 420 N

We know that maximum tension in the belt (T
1
),

1184 = σ. b. t = σ × 100 × 10 = 1000 σ
∴ σ = 1184 / 1000 = 1.184 N/mm2 = 1.184 MPa  Ans.

Example 11.8. A leather belt is required to transmit 7.5 kW from a pulley 1.2 m in diameter,

running at 250 r.p.m. The angle embraced is 165° and the coefficient of friction between the belt and

the pulley is 0.3. If the safe working stress for the leather belt is 1.5 MPa, density of leather 1 Mg/m3

and thickness of belt 10 mm, determine the width of the belt taking centrifugal tension into account.
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Solution. Given : P = 7.5 kW = 7500 W ; d = 1.2 m ; N = 250 r.p.m. ; θ = 165° = 165 × π / 180

= 2.88 rad ; µ = 0.3 ; σ = 1.5 MPa = 1.5 × 106 * N/m2 ; ρ = 1 Mg/m3 = 1 × 106 g/m3 = 1000 kg/m3;

t = 10 mm = 0.01 m

Let b = Width of belt in metres,

T
1

= Tension in the tight side of the belt in N, and

T
2

= Tension in the slack side of the belt in N.

We know that velocity of the belt,

v = π d . N / 60 = π × 1.2 × 250/60 = 15.71 m/s

and power transmitted (P),

7500 = (T
1
 – T

2
) v = (T

1
 – T

2
) 15.71

∴ T
1
 – T

2
= 7500 / 15.71 = 477.4 N ...(i)

We know that

1

2

2.3log . 0.3 2.88 0.864
T

T

 
= µ θ = × = 

 

1

2

0.864
log 0.3756

2.3

T

T

 
= = 

 
  or  1

2

2.375
T

T
= ...(ii)

...(Taking antilog of 0.3756)

From equations (i) and (ii),

T
1

= 824.6 N,   and   T
2
 = 347.2 N

We know that mass of the belt per metre length,

m = Area × length × density = b.t.l.ρ
= b × 0.01 × 1 × 1000 = 10 b kg

∴   Centrifugal tension,

T
C

= m. v2 = 10 b (15.71)2 = 2468 b N

and maximum tension in the belt,

T = σ. b. t = 1.5 × 106 × b × 0.01 = 15 000 b N

We know that T = T
1
 + T

C
  or  15000 b = 824.6 + 2468 b

15 000 b – 2468 b = 824.6  or  12 532 b = 824.6

∴ b = 824.6 / 12532 = 0.0658 m = 65.8 mm  Ans.

Example. 11.9. Determine the width of a 9.75 mm thick leather belt required to transmit

15 kW from a motor running at 900 r.p.m. The diameter of the driving pulley of the motor is 300 mm.

The driven pulley runs at 300 r.p.m. and the distance between the centre of two pulleys is 3 metres.

The density of the leather is 1000 kg/m3. The maximum allowable stress in the leather is 2.5 MPa.

The coefficient of friction between the leather and pulley is 0.3. Assume open belt drive and neglect

the sag and slip of the belt.

Solution. Given : t = 9.75 mm = 9.75 × 10–3 m ; P = 15 kW = 15 × 103 W ; N
1
 = 900 r.p.m. ;

d
1
 = 300 mm = 0.3 m ; N

2
 = 300 r.p.m. ; x = 3m ;  ρ = 1000 kg/m3 ; σ = 2.5 MPa = 2.5 × 106 N/m2 ;

µ = 0.3

* 1 MPa = 1 × 106 N/m2
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First of all, let us find out the diameter of the driven pulley (d
2
). We know that

2 1

1 2

N d

N d
=   or  1 1

2

2

900 0.3
0.9 m

300

N d
d

N

× ×= = =

and velocity of the belt,
1 1 0.3 900

14.14 m/s
60 60

d N
v

π π × ×= = =

For an open belt drive,

2 1 2 1– – 0.9 – 0.3
sin 0.1

2 2 3

r r d d

x x
α = = = =

× ...(∵ d
2
 > d

1
)

or α = 5.74°

∴   Angle of lap, θ = 180° – 2 α = 180 – 2 × 5.74 = 168.52°

= 168.52 × π / 180 = 2.94 rad

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.

We know that

1

2

2.3 log . 0.3 2.94 0.882
T

T

 
= µ θ = × = 

 

1

2

0.882
log 0.3835

2.3

T

T

 
= = 

 
  or  1

2

2.42
T

T
= ...(i)

... (Taking antilog of 0.3835)

We also know that power transmitted (P),

15 × 103 = (T
1
 – T

2
) v = (T

1
 – T

2
) 14.14

∴ T
1
 – T

2
= 15 × 103 / 14.14 = 1060 N .... (ii)

From equations (i) and (ii),

T
1

= 1806 N

Let b = Width of the belt in metres.

We know that mass of the belt per metre length,

m = Area × length × density = b.t.l.ρ
= b × 9.75 × 10–3 × 1 × 1000 = 9.75 b kg

∴   Centrifugal tension,

T
C

= m.v2 = 9.75 b (14.14)2 = 1950  b N

Maximum tension in the belt,

T = σ. b. t = 2.5 × 106 × b × 9.75 × 10–3 = 24 400 b N

We know that T = T
1
 + T

C
  or  T – T

C
 = T

1

24 400 b – 1950 b = 1806  or  22 450 b = 1806

∴ b = 1806 / 22 450 = 0.080 m = 80 mm  Ans.

Example. 11.10. A pulley is driven by a flat belt, the angle of lap being 120°. The belt is 100

mm wide by 6 mm thick and density1000 kg/m3. If the coefficient of friction is 0.3 and the maximum

stress in the belt is not to exceed 2 MPa, find the greatest power which the belt can transmit and the

corresponding speed of the belt.
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Solution. Given : θ = 120° = 120 × π / 180 = 2.1 rad ; b = 100 mm = 0.1 m ; t = 6 mm

= 0.006 m ; ρ = 1000 kg / m3 ; µ = 0.3 ; σ = 2 MPa = 2 × 106 N/m2

Speed of the belt for greatest power

We know that maximum tension in the belt,

                                   T = σ. b. t = 2 × 106 × 0.1 × 0.006 = 1200 N

and mass of the belt per metre length,

                                  m = Area × length × density = b. t. l. ρ
                                   = 0.1 × 0.006 × 1 × 1000 = 0.6 kg/m

∴   Speed of the belt for greatest power,

                                  
1200

= 25.82 m/s
3 3 0.6

T
v

m
= =

× Ans.

Greatest power which the belt can transmit

We know that for maximum power to be transmitted, centrifugal tension,

                               T
C
 = T/3 = 1200/3 = 400 N

and tension in the tight side of the belt,

                               T
1
 = T – T

C
  = 1200 – 400 = 800 N

Let                            T
2
 =Tension in the slack side of the belt.

We know that

1

2

2.3log . 0.3 2.1 0.63
T

T

 
= µ θ = × = 

 

1

2

0.63
log 0.2739

2.3

T

T

 
= = 

 
  or  1

2

1.88
T

T
= ...(Taking antilog of 0.2739)

and
1

2

800
425.5 N

1.88 1.88

T
T = = =

∴  Greatest power which the belt can transmit,

P = (T
1
 – T

2
) v = (800 – 425.5) 25.82 = 9670 W = 9.67 kW  Ans.

Example 11.11. An open belt drive connects two pulleys 1.2 m and 0.5 m diameter, on

parallel shafts 4 metres apart. The mass of the belt is 0.9 kg per metre length and the maximum

tension is not to exceed 2000 N.The coefficient of friction is 0.3. The 1.2 m pulley, which is the driver,

runs at 200 r.p.m. Due to belt slip on one of the pulleys, the velocity of the driven shaft is only 450

r.p.m. Calculate the torque on each of the two shafts, the power transmitted, and power lost in

friction. What is the efficiency of the drive ?

Solution. Given : d
1
 = 1.2 m or r

1
 = 0.6 m ; d

2
 = 0.5 m or r

2
 = 0.25 m ; x = 4 m ; m = 0.9 kg/m;

T = 2000 N ; µ = 0.3 ; N
1
 = 200 r.p.m. ; N

2
 = 450 r.p.m.

We know that velocity of the belt,

1 1. 1.2 200
12.57 m/s

60 60

d N
v

π π × ×= = =

and centrifugal tension, T
C

= m.v2 = 0.9 (12.57)2 = 142 N

∴   Tension in the tight side of the belt,

T
1

= T – T
C
 = 2000 – 142 = 1858 N
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11.19. Initial Tension in the Belt

When a belt is wound round the two pulleys (i.e. driver and follower), its two ends are joined

together ; so that the belt may continuously move over the pulleys, since the motion of the belt from

the driver and the follower is governed by a firm grip, due to friction between the belt and the pulleys.

In order to increase this grip, the belt is tightened up. At this stage, even when the pulleys are station-

ary, the belt is subjected to some tension, called initial tension.

When the driver starts rotating, it pulls the belt from one side (increasing tension in the belt

on this side) and delivers it to the other side (decreasing the tension in the belt on that side). The

increased tension in one side of the belt is called tension in tight side and the decreased tension in the

other side of the belt is called tension in the slack side.

Let T
0

= Initial tension in the belt,

T
1

= Tension in the tight side of the belt,

T
2

= Tension in the slack side of the belt, and

α = Coefficient of increase of the belt length per unit force.

A little consideration will show that the increase of tension in the tight side

= T
1
 – T

0

and increase in the length of the belt on the tight side

= α (T
1
 – T

0
) ...(i)

Similarly, decrease in tension in the slack side

= T
0
 – T

2

and decrease in the length of the belt on the slack side

= α (T
0
 – T

2
) ...(ii)

Assuming that the belt material is perfectly elastic such that the length of the belt remains

constant, when it is at rest or in motion, therefore increase in length on the tight side is equal to

decrease in the length on the slack side. Thus, equating equations (i) and (ii),

α (T
1
 – T

0
) = α (T

0
 – T

2
)   or   T

1
 – T

0
 = T

0
 – T

2

∴ 1 2
0

2

T T
T

+
= ...(Neglecting centrifugal tension)

1 2 C2

2

T T T+ +
= ...(Considering centrifugal tension)

Example. 11.12. In a flat belt drive the initial tension is 2000 N. The coefficient of friction

between the belt and the pulley is 0.3 and the angle of lap on the smaller pulley is 150°. The smaller

pulley has a radius of 200 mm and rotates at 500 r.p.m. Find the power in kW transmitted by the belt.

Solution. Given : T
0
 = 2000 N ; µ

0
 = 0.3 ; θ = 150° = 150° × π / 180 = 2.618 rad ; r

2
 = 200 mm

or d
2
 = 400 mm = 0.4 m ; N

2
 = 500 r.p.m.

We know that velocity of the belt,

2 2. 0.4 500
10.47 m/s

60 60

d N
v

π π × ×= = =

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.
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We know that initial tension (T
0
),

                    1 22000
2

T T+
=          or      T

1
 + T

2
 = 4000 N ...(i)

We also know that

         
1

2

2.3log . 0.3 2.618 0.7854
T

T

 
= µ θ = × = 

 

                                 1

2

0.7854
log 0.3415

2.3

T

T

 
= = 

 

or                                 1

2

2.2
T

T
=   ...(ii)

...(Taking antilog of 0.3415)

From equations (i) and (ii),

T
1

= 2750 N ;

and                           T
2
 = 1250 N

∴  Power transmitted,  P = (T
1
 – T

2
) v

                                     = (2750 – 1250) 10.47

= 15 700 W =15.7 kW  Ans.

Example 11.13. Two parallel shafts whose centre lines are 4.8 m apart, are connected by

open belt drive. The diameter of the larger pulley is 1.5 m and that of smaller pulley 1 m. The initial

tension in the belt when stationary is 3 kN. The mass of the belt is 1.5 kg / m length. The coefficient

of friction between the belt and the pulley is 0.3. Taking centrifugal tension into account, calculate

the power transmitted, when the smaller pulley rotates at 400 r.p.m.

Solution. Given : x = 4.8 m ; d
1
 = 1.5 m ; d

2
 = 1 m ; T

0
 = 3 kN = 3000 N ; m = 1.5 kg / m ;

µ = 0.3 ; N
2
 = 400 r.p.m.

We know that velocity of the belt,

2 2. 1 400
21m/s

60 60

d N
v

π π × ×= = =

and centrifugal tension, T
C

= m.v2 = 1.5 (21)2 = 661.5 N

Let T
1

= Tension in the tight side, and

T
2

= Tension in the slack side.

We know that initial tension (T
0
),

1 2 C 1 22 2 661.5
3000

2 2

T T T T T+ + + + ×
= =

∴ T
1
 + T

2
= 3000 × 2 – 2 × 661.5 = 4677 N ...(i)

For an open belt drive,

1 2 1 2– – 1.5 – 1
sin 0.0521

2 2 4.8

r r d d

x x
α = = = =

×
  or   α = 3°

∴  Angle of lap on the smaller pulley,

θ = 180° – 2 α = 180° – 2 × 3° = 174°

= 174° × π / 180 = 3.04 rad

A military tank uses chain, belt and gear drives

for its movement and operation.
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We know that

1

2

2.3log . 0.3 3.04 0.912
T

T

 
= µ θ = × = 

 

1

2

0.912
log 0.3965

2.3

T

T

 
= = 

 
  or   1

2

2.5
T

T
= ...(ii)

...(Taking antilog of 0.3965)

From equations (i) and (ii),

                          T
1
 =3341 N ;  and  T

2
 = 1336 N

∴ Power transmitted,

  P  = (T
1
 – T

2
) v = (3341 – 1336) 21 = 42 100 W = 42.1 kW Ans.

Example 11.14. An open flat belt drive connects two parallel shafts 1.2 metres apart. The

driving and the driven shafts rotate at 350 r.p.m. and 140 r.p.m. respectively and the driven pulley is

400 mm in diameter. The belt is 5 mm thick and 80 mm wide. The coefficient of friction between the

belt and pulley is 0.3 and the maximum permissible tension in the belting is 1.4 MN/m2. Determine:

1. diameter of the driving pulley, 2. maximum power that may be transmitted by the belting,

and 3. required initial belt tension.

Solution. Given : x = 1.2 m ; N
1
 = 350 r.p.m. ; N

2
 = 140 r.p.m. ; d

2
 = 400 mm = 0.4 m ;

t = 5 mm = 0.005 m ; b = 80 mm = 0.08 m ; µ = 0.3 ; σ = 1.4 MN/m2 = 1.4 × 106 N/m2

1.  Diameter of the driving pulley

Let d
1

= Diameter of the driving pulley.

We know that              2 1

1 2

N d

N d
=   or  2 2

1
1

. 140 0.4
0.16m

350

N d
d

N

×= = =  Ans.

2.  Maximum power transmitted by the belting

First of all, let us find the angle of contact of the belt on the smaller pulley (or driving

pulley).

Let                                  θ = Angle of contact of the belt on the driving pulley.

Fig. 11.18
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From Fig. 11.18, we find that

2 2 1 2 1

1 2

– – 0.4 – 0.16
sin 0.1

2 2 1.2

O M r r d d

O O x x
α = = = = =

×
or α = 5.74°

∴ θ = 180° – 2 α = 180° – 2 × 5.74° = 168.52°

= 168.52 × π / 180 = 2.94 rad

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.

We know that

1

2

2.3log . 0.3 2.94 0.882
T

T

 
= µ θ = × = 

 

1

2

0.882
log 0.3835

2.3

T

T

 
= = 

 
 or  1

2

2.42
T

T
= ...(i)

...(Taking antilog of 0.3835)

We know that maximum tension to which the belt can be subjected,

T
1

= σ × b × t = 1.4 × 106 × 0.08 × 0.005 = 560 N

∴ 1
2

560
231.4 N

2.42 2.42

T
T = = = ...[From equation (i)]

Velocity of the belt,
1 1. 0.16 350

2.93 m/s
60 60

d N
v

π π × ×= = =

∴  Power transmitted, P = (T
1
 – T

2
) v = (560 – 231.4) 2.93 = 963 W = 0.963 kW  Ans.

3.  Required initial belt tension

We know that the initial belt tension,

1 2
0

560 231.4
395.7 N

2 2

T T
T

+ += = =  Ans.

Example 11.15. An open belt running over two pulleys 240 mm and 600 mm diameter connects

two parallel shafts 3 metres apart and transmits 4 kW from the smaller pulley that rotates at 300

r.p.m. Coefficient of friction between the belt and the pulley is 0.3 and the safe working tension is

10N per mm width. Determine : 1. minimum width of the belt, 2. initial belt tension, and 3. length of

the belt required.

Solution. Given : d
2
 = 240 mm = 0.24 m ; d

1
 = 600 mm = 0.6 m ; x = 3 m ; P = 4 kW = 4000 W;

N
2
 = 300 r.p.m. ; µ = 0.3 ; T

1
 = 10 N/mm width

1.  Minimum width of belt

We know that velocity of the belt,

2 2. 0.24 300
3.77 m/s

60 60

d N
v

π π × ×= = =

Let T
1

= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.

∴  Power transmitted (P),

4000 = (T
1
 – T

2
) v = (T

1
 – T

2
) 3.77

or T
1
 – T

2
= 4000 / 3.77 = 1061 N ...(i)
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We know that for an open belt drive,

1 2 1 2– – 0.6 – 0.24
sin 0.06

2 2 3

r r d d

x x
α = = = =

×
  or  α = 3.44°

and angle of lap on the smaller pulley,

θ = 180° – 2α = 180° – 2 × 3.44° = 173.12°

= 173.12 × π / 180 = 3.022 rad

We know that

1

2

2.3log . 0.3 3.022 0.9066
T

T

 
= µ θ = × = 

 

1

2

0.9066
log 0.3942

2.3

T

T

 
= = 

 
  or  1

2

2.478
T

T
= ...(ii)

...(Taking antilog of 0.3942)

From equations (i) and (ii),

T
1

= 1779 N,  and  T
2
 = 718 N

Since the safe working tension is 10 N per mm width, therefore minimum width of the belt,

1 1779
177.9 mm

10 10

T
b = = =   Ans.

2.  Initial belt tension

We know that initial belt tension,

1 2
0

1779 718
= 1248.5N

2 2

T T
T

+ += =  Ans.

3.  Length of the belt required

We know that length of the belt required,

2
1 2

1 2

( – )
( – ) 2

2 4

d d
L d d x

x

π= + +

2(0.6 – 0.24)
(0.6 0.24) 2 3

2 4 3

π= + + × +
×

= 1.32 + 6 + 0.01 = 7.33 m  Ans.

Example 11.16. The following data refer to an open belt drive :

Diameter of larger pulley = 400 mm ; Diameter of smaller pulley = 250 mm ; Distance

between two pulleys = 2 m ; Coefficient of friction between smaller pulley surface and belt = 0.4 ;

Maximum tension when the belt is on the point of slipping = 1200 N.

Find the power transmitted at speed of 10 m/s. It is desired to increase the power. Which of

the following two methods you will select ?

1.  Increasing the initial tension in the belt by 10 per cent.

2.  Increasing the coefficient of friction between the smaller pulley surface and belt by 10 per

cent by the application of suitable dressing on the belt.

Find, also, the percentage increase in power possible in each case.
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* The wedging action of the V-belt in the groove of the pulley results in higher forces of friction. A little

consideration will show that the wedging action and the transmitted torque will be more if the groove angle

of the pulley is small. But a smaller groove angle will require more force to pull the belt out of the groove

which will result in loss of power and excessive belt wear due to friction and heat. Hence a selective groove

angle is a compromise between the two. Usually the groove angles of 32° to 38° are used.

The V-belts are made of fabric and cords moulded in rubber and covered with fabric and

rubber, as shown in Fig. 11.19 (a). These belts are moulded to a trapezoidal shape and are made

endless. These are particularly suitable for short drives i.e. when the shafts are at a short distance

apart. The included angle for the V-belt is usually from 30° – 40°. In case of flat belt drive, the belt

runs over the pulleys whereas in case of V-belt drive, the rim of the pulley is grooved in which the

V-belt runs. The effect of the groove is to increase the frictional grip of the V-belt on the pulley and

thus to reduce the tendency of slipping. In order to have a good grip on the pulley, the V-belt is in

contact with the side faces of the groove and not at the bottom. The power is transmitted by the

*wedging action between the belt and the V-groove in the pulley.

(a)  Cross-section of a V-belt. (b)  Cross-section of a V-grooved pulley.

Fig. 11.19. V-belt and V-grooved pulley.

A clearance must be provided at the bottom of the groove, as shown in Fig. 11.19 (b), in order

to prevent touching to the bottom as it becomes narrower from wear. The V-belt drive, may be

inclined at any angle with tight side either at top or bottom. In order to increase the power output,

several V- belts may be operated side by side. It may be noted that in multiple V-belt drive, all the

belts should stretch at the same rate so that the load is equally divided between them. When one of the

set of belts break, the entire set should be replaced at the same time. If only one belt is replaced, the

new unworn and unstressed belt will be more tightly stretched and will move with different velocity.

11.21. Advantages and Disadvantages of V-belt Drive Over Flat Belt Drive

Following are the advantages and disadvantages of the V-belt drive over flat belt drive.

Advantages

1. The V-belt drive gives compactness due to the small distance between the centres of pulleys.

2. The drive is positive, because the slip between the belt and the pulley groove is negligible.

3. Since the V-belts are made endless and there is no joint trouble, therefore the drive is

smooth.

4. It provides longer life, 3 to 5 years.
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5. It can be easily installed and removed.

6. The operation of the belt and pulley is quiet.

7. The belts have the ability to cushion the shock when machines are started.

8. The high velocity ratio (maximum 10) may be obtained.

9. The wedging action of the belt in the groove gives high value of limiting ratio of tensions.

Therefore the power transmitted by V-belts is more than flat belts for the same coefficient of friction,

arc of contact and allowable tension in the belts.

10. The V-belt may be operated in either direction with tight side of the belt at the top or

bottom. The centre line may be horizontal, vertical or inclined.

Disadvantages

1. The V-belt drive cannot be used with large centre distances.

2. The V-belts are not so durable as flat belts.

3. The construction of pulleys for V-belts is more complicated than pulleys for flat belts.

4. Since the V-belts are subjected to certain amount of creep, therefore these are not suitable

for constant speed application such as synchronous machines, and timing devices.

5. The belt life is greatly influenced with temperature changes, improper belt tension and

mismatching of belt lengths.

6. The centrifugal tension prevents the use of V-belts at speeds below 5 m/s and above 50m/s.

11.22. Ratio of Driving Tensions for V-belt

A V-belt with a grooved pulley is shown in Fig. 11.20.

Let R
1

= Normal reaction between the belt and

sides of the groove.

R = Total reaction in the plane of the groove.

2 β = Angle of the groove.

µ = Coefficient of friction between the belt

and sides of the groove.

Resolving the reactions vertically to the groove,

R = R
1
 sin β + R

1
 sin β = 2 R

1
 sin β

or 1
2sin

R
R =

β
We know that the frictional force

1

.
2 . 2 . cosec

2sin sin

R R
R R

µ= µ = µ × = = µ β
β β

Consider a small portion of the belt, as in Art. 11.14, subtending an angle δθ at the centre.

The tension on one side will be T and on the other side T + δT. Now proceeding as in Art. 11.14, we

get the frictional resistance equal to µ. R cosec β instead of µ . R. Thus the relation between T
1
 and T

2

for the V-belt drive will be

1

2

2.3 log . cosec
T

T

 
= µ θ β 

 

Fig. 11.20.
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Example 11.17. A belt drive consists of two V-belts in parallel, on grooved pulleys of the

same size. The angle of the groove is 30°. The cross-sectional area of each belt is 750 mm2 and

µ . = 0.12. The density of the belt material is 1.2 Mg/m3 and the maximum safe stress in the material

is 7 MPa. Calculate the power that can be transmitted between pulleys 300 mm diameter rotating at

1500 r.p.m. Find also the shaft speed in r.p.m. at which the power transmitted would be maximum.

Solution. Given : 2 β = 30° or β = 15° ; α = 750 mm2 = 750 × 10–6 m2 ; µ = 0.12 ; ρ = 1.2 Mg/m3

= 1200 kg/m3 ; σ = 7 MPa = 7 × 106 N/m2 ; d = 300 mm = 0.3 m ; N = 1500 r.p.m.

Power transmitted

We know that velocity of the belt,

                
. 0.3 1500

23.56 m/s
60 60

d N
v

π π× ×= = =

and mass of the belt per metre length,

       m = Area × length × density = 750 × 10–6 × 1 × 1200 = 0.9 kg/m

∴  Centrifugal tension,

      TC = m.v2 = 0.9 (23.56)2 = 500 N

We know that maximum tension in the belt,

         T = Maximum stress × cross-sectional area of belt = σ × a

              = 7 × 106 × 750 × 10–6 = 5250 N

∴   Tension in the tight side of the belt,

   T1 = T – TC = 5250 – 500 = 4750 N

Let         T
2
 = Tension in the slack side of the belt.

Since the pulleys are of the same size, therefore angle of contact, θ = 180° = π rad.

We know that

                
1

2

2.3log . cosec 0.12 cosec15 1.457
T

T

 
= µ θ β = × π × °= 

 

                1

2

1.457
log 0.6334

2.3

T

T

 
= = 

 
  or  1

2

4.3
T

T
=

...(Taking antilog of 0.6334)

and                                        
1

2

4750
1105 N

4.3 4.3

T
T = = =

We know that power transmitted,

                                    P = (T
1
 – T

2
) v × 2 ...(∵ No. of belts = 2)

                                       = (4750 – 1105) 23.56 × 2 = 171  752 W = 171.752 kW  Ans.

Shaft speed

Let                             N
1

= Shaft speed in r.p.m., and

                                    v
1
= Belt speed in m/s.

We know that for maximum power, centrifugal tension,

                                T
C 

=  T / 3  or  m (v
1
)2 = T / 3   or   0.9 (v

1
)2 = 5250 / 3 = 1750

∴                            (v
1
)2 = 1750 / 0.9 = 1944.4  or  v

1
 = 44.1 m/s
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We know that belt speed (v
1
),

1 1
1

. 0.3
44.1 0.0157 N

60 60

d N Nπ π× ×
= = =

∴ N
1

= 44.1 / 0.0157 = 2809 r.p.m.  Ans.

Example 11.18. Power is transmitted using a V-belt drive. The included angle of V-groove

is 30°. The belt is 20 mm deep and maximum width is 20 mm. If the mass of the belt is 0.35 kg per

metre length and maximum allowable stress is 1.4 MPa, determine the maximum power transmitted

when the angle of lap is 140°. µ  = 0.15.

Solution.  Given : 2 β = 30° or β = 15° ; t = 20 mm = 0.02 m ; b = 20 mm = 0.02 m ;

m = 0.35 kg/m ; σ = 1.4 MPa = 1.4 × 106 N/m2 ; θ = 140° = 140° × π / 180 = 2.444 rad ; µ = 0.15

We know that maximum tension in the belt,

T = σ. b. t = 1.4 × 106 × 0.02 × 0.02 = 560 N

and for maximum power to be transmitted, velocity of the belt,

560
23.1 m/s

3 3 0.35

T
v

m
= = =

×
Let T

1
= Tension in the tight side of the belt, and

T
2

= Tension in the slack side of the belt.

We know that

1

2

2.3log . cosec 0.15 2.444 cosec15 1.416
T

T

 
= µ θ β = × × °= 

 

1

2

1.416
log 0.616

2.3

T

T

 
= = 

 
  or  1

2

4.13
T

T
= ...(i)

...(Taking antilog of 0.616)

Centrifugal tension, C

560
187 N

3 3

T
T = = =

and T
1

= T – T
C
  = 560 – 187 = 373 N

1
2

373
90.3 N

4.13 4.13

T
T = = = ...[From equation (i)]

We know that maximum power transmitted,

P = (T
1
 – T

2
) v = (373 – 90.3) 23.1 = 6530 W = 6.53 kW  Ans.

Example 11.19. A compressor, requiring 90 kW is to run at about 250 r.p.m. The drive is by

V-belts from an electric motor running at 750 r.p.m. The diameter of the pulley on the compressor

shaft must not be greater than 1 metre while the centre distance between the pulleys is limited to 1.75

metre. The belt speed should not exceed 1600 m/min.

Determine the number of V-belts required to transmit the power if each belt has a cross-

sectional area of 375 mm2, density 1000 kg/m3 and an allowable tensile stress of 2.5 MPa. The

groove angle of the pulley is 35°. The coefficient of friction between the belt and the pulley is 0.25.

Calculate also the length required of each belt.

Solution. Given : P = 90 kW ; N
2
 = 250 r.p.m. ; N

1
 = 750 r.p.m. ; d

2
 = 1 m ; x = 1.75 m ;

v = 1600 m/min = 26.67 m/s ; a = 375 mm2 = 375 × 10–6 m2 ; ρ = 1000 kg/m3 ; σ = 2.5 MPa

= 2.5 × 106 N/m2 ; 2 β = 35° or β = 17.5° ; µ = 0.25
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First of all, let us find the diameter of pulley on the motor shaft (d
1
). We know that

2 1

1 2

N d

N d
=   or  2 2

1

1

. 250 1
0.33m

750

N d
d

N

×= = =

We know that the mass of the belt per metre length,

m = Area × length × density

= 375 × 10–6 × 1 × 1000 = 0.375 kg

∴   Centrifugal tension, T
C

= m.v2 = 0.375 (26.67)2 = 267 N

and maximum tension in the belt,

T = σ. a = 2.5 × 106 × 375 × 10–6 = 937.5 N

∴  Tension in the tight side of the belt,

T
1

= T – T
C
 = 937.5 – 267 = 670.5 N

Let T
2

= Tension in the slack side of the belt.

For an open belt drive, as shown in Fig. 11.21,

2 2 1 2 1

1 2

– – 1 – 0.33
sin 0.1914

2 2 1.75

O M r r d d

O O x x
α = = = = =

×
∴ α = 11°

and angle of lap on smaller pulley (i.e. pulley on motor shaft),

θ = 180° – 2α = 180° – 2 × 11° = 158°

= 158 × π / 180 = 2.76 rad

Fig. 11.21

We know that

1

2

2.3log . cosec 0.25 2.76 cosec17.5 2.295
T

T

 
= µ θ β = × × ° = 

 

1

2

2.295
log 0.998

2.3

T

T

 
= = 

 
  or  

1

2

9.954
T

T
=       ...(Taking antilog of 0.998)

and 1
2

670.5
67.36 N

9.954 9.954

T
T = = =

Number of V-belts

We know that power transmitted per belt

= (T
1
 – T

2
) v = (670.5 – 67.36) 26.67 = 16  086 W

= 16.086 kW

∴ Total power transmitted 90
Number of V-belts = 5.6 or 6

Power transmitted per belt 16.086
= = Ans.
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Length of each belt

We know that length of belt for an open belt drive,

2
2 1

2 1

( – )
( ) 2

2 4

d d
L d d x

x

π= + + +

2(1 – 0.33)
(1 0.33) 2 1.75

2 4 1.75

π= + + × +
×

= 2.1 + 3.5 + 0.064 = 5.664 m  Ans.

11.23. Rope Drive

The rope drives are widely used where a large amount of power is to be transmitted, from one

pulley to another, over a considerable distance. It may be noted that the use of flat belts is limited for

the transmission of moderate power from one pulley to another when the two pulleys are not more

than 8 metres apart. If large amounts of power are to be transmitted by the flat belt, then it would

result in excessive belt cross-section. It may be noted that frictional grip in case of rope drives is more

than that in V-drive. One of the main advantage of rope drives is that a number of separate drives may

be taken from the one driving pulley. For example, in many spinning mills, the line shaft on each floor

is driven by ropes passing directly from the main engine pulley on the ground floor.

The rope drives use the following two types of ropes :

1.  Fibre ropes, and 2. Wire ropes.

The fibre ropes operate successfully when the pulleys are about 60 metres apart, while the

wire ropes are used when the pulleys are upto 150 metres apart.

11.24. Fibre Ropes

The ropes for transmitting power are usually made from fibrous materials such as hemp,

manila and cotton. Since the hemp and manila fibres are rough, therefore the ropes made from these

fibres are not very flexible and possesses poor mechanical properties. The hemp ropes have less

strength as compared to manila ropes. When the hemp and manila ropes are bent over the sheave (or

pulley), there is some sliding of fibres, causing the rope to wear and chafe internally. In order to

minimise this defect, the rope fibres are lubricated with a tar, tallow or graphite. The lubrication also

makes the rope moisture proof. The hemp ropes are suitable only for hand operated hoisting machin-

ery and as tie ropes for lifting tackle, hooks etc.

The cotton ropes are very soft and smooth. The lubrication of cotton ropes is not necessary.

But if it is done, it reduces the external wear between the rope and the grooves of its sheaves. It may

be noted that manila ropes are more durable and stronger than cotton ropes. The cotton ropes are

costlier than manila ropes.

Note : The diameter of manila and cotton ropes usually ranges from 38 mm to 50 mm. The size of the rope is

usually designated by its circumference or ‘girth’.

11.25. Advantages of Fibre Rope Drives

The fibre rope drives have the following advantages :

1.  They give smooth, steady and quiet service.

2.  They are little affected by out door conditions.

3.  The shafts may be out of strict alignment.

4.  The power may be taken off in any direction and in fractional parts of the whole amount.

5.  They give high mechanical efficiency.
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11.26. Sheave for Fibre Ropes

The fibre ropes are usually circular in cross-section as shown in Fig. 11.22 (a). The sheave

for the fibre ropes is shown in Fig. 11.22 (b).  The groove angle of the pulley for rope drives is usually

45°. The grooves in the pulleys are made narrow at the bottom and the rope is pinched between the

edges of the V-groove to increase the holding power of the rope on the pulley.

(a)  Cross-section of a rope. (b)  Sheave (Grooved pulley) for ropes.

Fig.  11.22.  Rope and sheave.

11.27. Wire Ropes

When a large amount of power is to be transmitted over long distances from one pulley to

another (i.e. when the pulleys are upto 150 metres apart), then wire ropes are used. The wire ropes are

widely used in elevators, mine hoists, cranes, conveyors, hauling devices and suspension bridges.

The wire ropes run on grooved pulleys but they rest on the bottom of the *grooves and are not wedged

between the sides of the grooves. The wire ropes have the following advantage over cotton ropes.

* The fibre ropes do not rest at the bottom of the groove.

This electric hoist uses wire ropes.
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1. These are lighter in weight, 2. These offer silent operation, 3. These can withstand shock

loads, 4. These are more reliable, 5. They do not fail suddenly, 6. These are more durable, 7. The

efficiency is high, and 8. The cost is low.

11.28. Ratio of Driving Tensions for Rope Drive

The ratio of driving tensions for the rope drive may be obtained in the similar way as V-belts.

We have discussed in Art. 11.22, that the ratio of driving tensions is

1

2

2.3log . cosec
T

T

 
= µ θ β 

 
where, µ, θ and β have usual meanings.

Example 11.20. A rope drive transmits 600 kW from a pulley of effective diameter 4 m,

which runs at a speed of 90 r.p.m. The angle of lap is 160° ; the angle of groove 45° ; the coefficient

of friction 0.28 ; the mass of rope 1.5 kg / m and the allowable tension in each rope 2400 N. Find the

number of ropes required.

Solution. Given : P = 600 kW ; d = 4 m ; N = 90 r.p.m. ; θ = 160° = 160 × π / 180 = 2.8 rad;

2 β = 45° or β = 22.5° ; µ = 0.28 ; m = 1.5 kg / m ; T = 2400 N

We know that velocity of the rope,

. 4 90
18.85 m/s

60 60

d N
v

π π× ×= = =

∴   Centrifugal tension, T
C

= m.v2 = 1.5 (18.85)2 = 533 N

and tension in the tight side of the rope,

T
1

= T – T
C
 = 2400 – 533 = 1867 N

Let T
2

= Tension in the slack side of the rope.

We know that

1

2

2.3log . cosec 0.28 2.8 cosec 22.5 2.05
T

T

 
= µ θ β = × × ° = 

 

1

2

2.05
log 0.8913

2.3

T

T

 
= = 

 
  or  1

2

7.786
T

T
=

...(Taking antilog of 0.8913)

and 1
2

1867
240 N

7.786 7.786

T
T = = =

We know that power transmitted per rope

= (T
1
 – T

2
) v = (1867 – 240) 18.85 = 30  670 W = 30.67 kW

∴ Total power transmitted 600
Number of ropes = 19.56 or 20

Power transmitted per rope 30.67
= =   Ans.

Example 11.21. A pulley used to transmit power by means of ropes has a diameter of 3.6

metres and has 15 grooves of 45° angle. The angle of contact is 170° and the coefficient of friction

between the ropes and the groove sides is 0.28. The maximum possible tension in the ropes is 960 N

and the mass of the rope is 1.5 kg per metre length. What is the speed of pulley in r.p.m. and the power

transmitted if the condition of maximum power prevail ?

Solution. Given : d = 3.6 m ; No. of grooves = 15 ; 2 β = 45° or β = 22.5° ; θ = 170°

= 170 π × 180 = 2.967 rad ; µ = 0.28 ; T = 960 N ; m = 1.5 kg/m
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Speed of the pulley

Let                          N = Speed of the pulley in r.p.m.

We know that for maximum power, velocity of the rope or pulley,

960
14.6 m/s

3 3 1.5

T
v

m
= = =

×

∴ 60 14.6 60
= 77.5 r.p.m.

3.6

v
N

d

× ×= =
π π×

  Ans. ...
60

d N
v

π =  
�

Power transmitted

We know that for maximum power, centrifugal tension,

T
C

= T / 3 = 960 / 3 = 320 N

∴  Tension in the tight side of the rope,

T
1

= T – T
C
  = 960 – 320 = 640 N

Let T
2

= Tension in the slack side of the rope.

We know that
1

2

2.3log . cosec 0.28 2.967 cosec 22.5 2.17
T

T

 
= µ θ β = × × ° = 

 

1

2

2.17
log 0.9438

2.3

T

T

 
= = 

 
  or  1

2

8.78
T

T
=

...(Taking antilog of 0.9438)

and 1
2

640
73 N

8.78 8.78

T
T = = =

∴  Power transmitted per rope = (T
1
 – T

2
) v = (640 – 73) 14.6 = 8278 W = 8.278 kW

Since the number of grooves are 15, therefore total power transmitted

= 8.278 × 15 = 124.17 kW  Ans.

Example 11.22. Following data is given for a rope pulley transmitting 24 kW :

Diameter of pulley = 400 mm ; Speed = 110 r.p.m.; angle of groove = 45° ; Angle of lap on

smaller pulley = 160° ; Coefficient of friction = 0.28 ; Number of ropes = 10 ; Mass in kg/m length

of ropes = 53 C2 ; and working tension is limited to 122 C2 kN, where C is girth of rope in metres.

Find initial tension and diameter of each rope.

Solution. Given : P
T
 = 24 kW ; d = 400 mm = 0.4 m ; N = 110 r.p.m. ; 2 β = 45° or β = 22.5°;

θ = 160° = 160 × π / 180 = 2.8 rad ; n = 0.28 ; n = 10 ; m = 53 C2 kg/m ; T = 122 C2 kN

= 122 × 103 C2  N

Initial tension

We know that power transmitted per rope,

TTotal power transmitted 24
2.4 kW = 2400 W

No. of ropes 10

P
P

n
= = = =

and velocity of the rope,
. 0.4 110

2.3m/s
60 60

d N
v

π π× ×= = =

Let T = Tension in the tight side of the rope, and

T
2

= Tension in the slack side of the rope.
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We know that power transmitted per rope ( P )

2400 = (T
1
 – T

2
) v = (T

1
 – T

2
) 2.3

∴ T
1
 – T

2
= 2400 / 2.3 = 1043.5 N ...(i)

We know that

1

2

2.3log . cosec 0.28 2.8 cosec 22.5 2.05
T

T

 
= µ θ β = × × °= 

 

1

2

2.05
log 0.8913

2.3

T

T

 
= = 

 
  or  1

2

7.786
T

T
= ...(ii)

...(Taking antilog of 0.8913)

From equations (i) and (ii),

T
1

= 1197.3 N, and T
2
 = 153.8 N

We know that initial tension in each rope,

1 2
0

1197.3 153.8
675.55 N

2 2

T T
T

+ += = = Ans.

Diameter of each rope

Let d
1

= Diameter of each rope,

We know that centrifugal tension,

T
C

= m.v2 = 53 C2 (2.3)2 = 280.4 C2 N

and working tension (T),

122 × 103 C2 = T
1
 + T

C
 = 1197.3 + 280.4 C2

122 × 103 C2 – 280.4 C2 = 1197.3

∴ C2 = 9.836 × 10–3  or  C = 0.0992 m = 99.2 mm

We know that girth (i.e. circumference) of rope (C),

99.2 = π d
1
  or  d

1
 = 99.2 / π = 31.57 mm  Ans.

11.29. Chain Drives

We have seen in belt and rope

drives that slipping may occur. In order

to avoid slipping, steel chains are used.

The chains are made up of rigid links

which are hinged together in order to

provide the necessary flexibility for

warping around the driving and driven

wheels. The wheels have projecting teeth

and fit into the corresponding recesses,

in the links of the chain as shown in Fig.

11.23. The wheels and the chain are thus

constrained to move together without

slipping and  ensures perfect velocity

ratio. The toothed wheels are known as

sprocket wheels or simply sprockets.

These wheels resemble to spur gears.
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The chains are mostly used to transmit mo-

tion and power from one shaft to another, when the

distance between the centres of the shafts is short such

as in bicycles, motor cycles, agricultural   machinery,

road rollers, etc.

11.30. Advantages and Disadvantages
of Chain Drive Over Belt or Rope
Drive

Following are the advantages and disadvan-

tages of chain drive over belt or rope drive :

 Advantages

1.  As no slip takes place during chain drive, hence perfect velocity ratio is obtained.

2.  Since the chains are made of metal, therefore they occupy less space in width than a belt

   or rope drive.

3.  The chain drives may be used when the distance between the shafts is less.

4.  The chain drive gives a high transmission efficiency (upto 98 per cent).

5.  The chain drive gives less load on the shafts.

6.  The chain drive has the ability of transmitting motion to several shafts by one chain only.

 Disadvantages

1.  The production cost of chains is relatively high.

2.  The chain drive needs accurate mounting and careful maintenance.

3.  The chain drive has velocity fluctuations especially when unduly stretched.

11.31. Terms Used in Chain Drive

The following terms are frequently used in chain drive.

1.  Pitch of the chain : It is the distance between the hinge centre of a link and the corre-

sponding hinge centre of the adjacent link as shown in Fig. 11.24. It is usually denoted by p.

Fig. 11.24. Pitch of the chain. Fig. 11.25. Pitch circle diameter of the chain sprocket.

2.  Pitch circle diameter of the chain sprocket. It is the diameter of the circle on which the

hinge centres of the chain lie, when the chain is wrapped round a sprocket as shown in Fig. 11.25. The

points A , B, C, and D are the hinge centres of the chain and the circle drawn through these centres is

called pitch circle and its diameter (d) is known as pitch circle diameter.

Fig. 11.23. Sprocket and chain.
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11.32. Relation Between Pitch and Pitch Circle Diameter

A chain wrapped round the sprocket is shown in Fig. 11.25. Since the links of the chain are

rigid, therefore pitch of the chain does not lie on the arc of the pitch circle. The pitch length becomes

a chord. Consider one pitch length A B of the chain subtending an angle θ at the centre of sprocket (or

pitch circle).

Let d = Diameter of the pitch circle, and

T = Number of teeth on the sprocket.

From Fig. 11.25, we find that pitch of the chain,

2 sin 2 sin sin
2 2 2 2

d
p AB AO d

θ θ θ     = = = × =          

We know that
360

T

°
θ =

∴
360 180

sin sin
2

p d d
T T

° °   = =      

or
180

cosecd p
T

° =   

11.33. Relation Between
 Chain Speed and
 Angular Velocity
 of  Sprocket

Since the links of the chain

are rigid, therefore they will have

different positions on the sprocket

at different instants. The relation

between the chain speed (v) and

angular velocity of the sprocket (ω)

also varies with the angular posi-

tion of the sprocket. The extreme

positions are shown in Fig. 11.26

(a) and (b).

Fig. 11.26. Relation between chain speed and angular velocity of sprocket.
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For the angular position of the sprocket as shown in Fig. 11.26 (a),

v = ω × OA

and for the angular position of the sprocket as shown in Fig. 11.26 (b),

cos cos
2 2

v OX OC OA
θ θ   = ω × = ω × = ω ×      

...(∵ OC = OA)

11.34. Kinematic of Chain Drive

Fig. 11.27 shows an arrangement of a chain drive in which the smaller or driving sprocket has

6 teeth and the larger or driven sprocket has 9 teeth. Though this is an impracticable case, but this is

considered to bring out clearly the kinematic conditions of a chain drive. Let both the sprockets rotate

anticlockwise and the angle subtended by the chain pitch at the centre of the driving and driven

sprockets be α and φ respectively. The lines A B and A
1
B

1
 show the positions of chain having mini-

mum and maximum inclination respectively with the line of centres O
1
O

2
 of the sprockets. The points

A , B
2
 and B are in one straight line and the points A

1
,C and B

1
 are in one straight line. It may be noted

that the straight length of the chain between the two sprockets must be equal to exact number of

pitches.

Fig. 11.27. Kinematic of chain drive.

Let us now consider the pin centre on the driving sprocket in position A . The length of the

chain A B will remain straight as the sprockets rotate, until A  reaches A
1
 and B reaches B

1
. As the

driving sprocket continues to turn, the link A
1
C of the chain turns about the pin centre C and the

straight length of the chain between the two sprockets reduces to CB
1
. When the pin centre C moves

to the position A
1
, the pin centre A

1
 moves to the position A

2
. During this time, each of the sprockets

rotate from its original position by an angle corresponding to one chain pitch. During the first part of

the angular displacement, the radius O
1 

A  moves to O
1 

A
1
 and the radius O

2 
B moves to O

2 
B

1
. This

arrangement is kinematically equivalent to the four bar chain O
1
ABO

2
.

During the second part of the angular displacement, the radius O
1 
A

1
 moves to O

1
A

2
 and the

radius O
2 

B
1
 moves to O

2 
B

2
. This arrangement is kinematically equivalent to the four bar chain

O
1
CB

1
O

2
. The ratio of the angular velocities, under these circumstances, cannot be constant. This

may be easily shown as discussed below :

First of all, let us find the instantaneous centre for the two links O
1
 A  and O

2 
B. This lies at

point I which is the intersection of B A and O
2 
O

1
 produced as shown in Fig. 11.28. If ω

1
 is the angular

velocity of the driving sprocket and ω
2
 is the angular velocity of the driven sprocket, then

ω
1
 × O

1
 I = ω

2
 × O

2
 I

or 1 2 2 1 1 2 1

2 1 1 1

1
O I O O O I O O

O I O I O I

ω += = = +
ω

.
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The distance between the centres of two sprockets O
1 

O
2
 is constant for a given chain drive,

but the distance O
1 

I varies periodically as the two sprockets rotate. This period corresponds to a

rotation of the driving sprocket by an angle α. It is clear from the figure that the line A B has minimum

inclination with line O
1 

O
2
. Therefore the distance O

1 
I is maximum and thus velocity ratio (ω

1
 / ω

2
)

is minimum. When the chain occupies the position A
1 

B
1
, the inclination of line A

1 
B

1
 is maximum

with the line O
1 

O
2
. Therefore the distance O

1 
I
1
 is minimum and thus the velocity ratio (ω

1
 / ω

2
) is

maximum.

Fig. 11.28.  Angular velocities of the two sprockets.

In actual practice, the smaller sprocket have a minimum of 18 teeth and hence the actual

variation of velocity ratio (ω
1
/ω

2
) from the mean value is very small.

11.35. Classification of Chains

The chains, on the basis of their use, are classified into the following three groups :

1.  Hoisting and hauling (or crane) chains,

2.  Conveyor (or tractive) chains, and

3.  Power transmitting (or driving) chains.

These chains are discussed, in detail, in the following pages.

11.36. Hoisting and Hauling Chains

These chains are used for hoisting

and hauling purposes. The hoisting and

hauling chains are of the following two

types :

1.  Chain with oval links. The links

of this type of chain are of oval shape, as

shown in Fig. 11.29 (a). The joint of each

link is welded. The sprockets which are used

for this type of chain have receptacles to re-

ceive the links. Such type of chains are used

only at low speeds such as in chain hoists and in anchors for marine works.

(a) Chain with oval links. (b) Chain with square links.

Fig. 11.29.  Hoisting and hauling chains.

2.  Chain with square links. The links of this type of chain are of square shape, as shown in

Fig. 11.29 (b). Such type of chains are used in hoists, cranes, dredges. The manufacturing cost of this

type of chain is less than that of chain with oval links, but in these chains, the kinking occurs easily on

overloading.
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11.37. Conveyor Chains

These chains are used for elevating and conveying the materials continuously. The conveyor

chains are of the following two types :

1.  Detachable or hook joint type chain, as shown in Fig. 11.30 (a), and

2.  Closed joint type chain, as shown in Fig. 11.30 (b).

(a) Detachable or hook joint type chain. (b) Closed joint type chain.

Fig. 11.30.  Conveyor chains.

The conveyor chains are usually made of malleable cast iron. These chains do not have

smooth running qualities. The conveyor chains run at slow speeds of about 3 to 12 km.p.h.

11.38. Power Transmitting Chains

These chains are used for transmission of power, when the distance between the centres of

shafts is short. These chains have provision for efficient lubrication. The power transmitting chains

are of the following three types.

1.  Block chain. A block chain, as shown in Fig. 11.31, is also known as bush chain. This

type of chain was used in the early stages of development in the power transmission.

Fig. 11.31.  Block chain.

It produces noise when approaching or leaving the teeth of the sprocket because of rubbing

between the teeth and the links. Such type of chains are used to some extent as conveyor chain at

small speed.

2.  Bush roller chain. A bush roller chain, as shown in Fig. 11.32, consists of outer plates or

pin link plates, inner plates or roller link plates, pins, bushes and rollers. A pin passes through the

bush which is secured in the holes of the roller between the two sides of the chain. The rollers are free

to rotate on the bush which protect the sprocket wheel teeth against wear.

A bush roller chain is extremely strong and simple in construction. It gives good service

under severe conditions. There is a little noise with this chain which is due to impact of the rollers on

the sprocket wheel teeth. This chain may be used where there is a little lubrication. When one of these

chains elongates slightly due to wear and stretching of the parts, then the extended chain is of greater

pitch than the pitch of the sprocket wheel teeth. The rollers then fit unequally into the cavities of the
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wheel. The result is that the total load falls on one teeth or on a few teeth. The stretching of the parts

increase wear of the surfaces of the roller and of the sprocket wheel teeth.

Fig. 11.32.  Bush roller chain.

3.  Inverted tooth or silent chain. An inverted

tooth or silent chain is shown in Fig. 11.33. It is designed

to eliminate the evil effects caused by stretching and to

produce noiseless running. When the chain stretches and

the pitch of the chain increases, the links ride on the teeth

of the sprocket wheel at a slightly increased radius. This

automatically corrects the small change in the pitch. There

is no relative sliding between the teeth of the inverted tooth

chain and the sprocket wheel teeth. When properly

lubricated, this chain gives durable service and runs very

smoothly and quietly.

11.39. Length of Chain

An open chain drive system connecting the two sprockets is shown in Fig. 11.34. We have

already discussed in Art. 11.11 that the length of belt for an open belt drive connecting the two pulleys

of radii r
1
 and r

2
 and a centre distance x, is

2
1 2

1 2

( – )
( ) 2

r r
L r r x

x
= π + + + (i)

Fig. 11.34.  Length of chain

Fig. 11.33.  Inverted tooth or silent chain.
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If this expression is used for determining the length of chain, the result will be slightly greater

than the required length. This is due to the fact that the pitch lines A B C D E F G and P Q R S of the

sprockets are the parts of a polygon and not that of a circle. The exact length of the chain may be

determined as discussed below :

Let T
1

= Number of teeth on the larger sprocket,

T
2

= Number of teeth on the smaller sprocket, and

p = Pitch of the chain.

We have discussed in Art. 11.32, that diameter of the pitch circle,

180
cosecd p

T

° =   
  or  

180
cosec

2

p
r

T

° =   
∴   For larger sprocket,

1

1

180
cosec

2

p
r

T

 °=  
 

and for smaller sprocket, 2

2

180
cosec

2

p
r

T

 °=  
 

Since the term π (r
1
 + r

2
) is equal to half the sum of the circumferences of the pitch circles,

therefore the length of chain corresponding to

1 2 1 2( ) ( )
2

p
r r T Tπ + = +

Substituting the values of r
1
, r

2
 and π (r

1
 + r

2
) in equation (i), the length of chain is given by

2

1 2

1 2

180 180
cosec – cosec

2 2
( ) 2

2

p p

T Tp
L T T x

x

    ° °
    

    = + + +

If  x = m.p, then

2

1 21 2

180 180
cosec – cosec

( )
2 .

2 4

T TT T
L p m p K

m

     ° °      +     = + + = 
 
 
  

where K = Multiplying factor
2

1 21 2

180 180
cosec – cosec

( )
2

2 4

T TT T
m

m

    ° °
    

+     = + +

The value of multiplying factor (K) may not be a complete integer. But the length of the chain

must be equal to an integer number of times the pitch of the chain. Thus, the value of K should be

rounded off to the next higher integral number.

Example 11.23. A chain drive is used for reduction of speed from 240 r.p.m. to 120 r.p.m.

The number of teeth on the driving sprocket is 20. Find the number of teeth on the driven sprocket. If

the pitch circle diameter of the driven sprocket is 600 mm and centre to centre distance between the

two sprockets is 800 mm, determine the pitch and length of the chain.
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8. It is stated that the speed at which a belt or rope should be run to transmit maximum power is that at

which the maximum allowable tension is three times the centrifugal tension in the belt or rope at that

speed. Prove the statement.

9. Explain what do you understand by ‘initial tension in a belt’.

10. Derive an expression for the ratio of the driving tensions in a rope drive assuming the angle of the

groove of the pulley to be as 2 β.

11. Discuss relative merits and demerits of belt, rope and chain drive for transmission of power.

12. What are different types of chains ? Explain, with neat sketches, the power transmission chains.

13. Obtain an expression for the length of a chain.

OBJECTIVE TYPE QUESTIONS

1. The velocity ratio of two pulleys connected by an open belt or crossed belt is

(a)  directly proportional to their diameters

(b)  inversely proportional to their diameters

(c)  directly proportional to the square of their diameters

(d)  inversely proportional to the square of their diameters

2. Two pulleys of diameters d
1
 and d

2
 and at distance x apart are connected by means of an open belt

drive. The length of the belt is

2
1 2

1 2
( )

( ) ( ) 2
2 4

d d
a d d x

x

π ++ + +
2

1 2
1 2

( – )
( ) ( – ) 2

2 4

d d
b d d x

x

π + +

2
1 2

1 2
( – )

( ) ( ) 2
2 4

d d
c d d x

x

π + + +
2

1 2
1 2

( )
( ) ( – ) 2

2 4

d d
d d d x

x

π ++ +

3. In a cone pulley, if the sum of radii of the pulleys on the driving and driven shafts is constant, then

(a)  open belt drive is recommended

(b)  cross belt drive is recommended

(c)  both open belt drive and cross belt drive are recommended

(d)  the drive is recommended depending upon the torque transmitted

4. Due to slip of the belt, the velocity ratio of the belt drive

(a) decreases (b) increases (c) does not change

5. When two pulleys of different diameters are connected by means of an open belt drive, then the angle

of contact taken into consideration should be of the

(a) larger pulley (b) smaller pulley (c) average of two pulleys

6. The power transmitted by a belt is maximum when the maximum tension in the belt (T) is equal

to

(a) T
C

(b) 2T
C

(c) 3T
C

(d) 4T
C

where T
C
 = Centrifugal tension.

7. The velocity of the belt for maximum power is

(a)
3

T

m
(b) 

4

T

m
(c)  

5

T

m
(d) 

6

T

m

where      m = Mass of the belt in kg per metre length.
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8. The centrifugal tension in belts

(a) increases power transmitted

(b) decreases power transmitted

(c) have no effect on the power transmitted

(d) increases power transmitted upto a certain speed and then decreases

9. When the belt is stationary, it is subjected to some tension, known as initial tension. The value of this

tension is equal to the

(a)  tension in the tight side of the belt

(b)  tension in the slack side of the belt

(c)  sum of the tensions in the tight side and slack side of the belt

(d)  average tension of the tight side and slack side of the belt

10. The relation between the pitch of the chain ( p) and pitch circle diameter of the sprocket (d) is given by

(a)  
60

sinp d
T

° =   
(b)  

90
sinp d

T

° =   

(c)  
120

sinp d
T

° =    (d)  
180

sinp d
T

° =   

where T  = Number of teeth on the sprocket.

ANSWERS

1. (b) 2. (c) 3. (b) 4. (a) 5. (b)

6. (c) 7. (a) 8. (c) 9. (d) 10. (d)
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1. Introduction

2. Materials for Brake Lining.

3. Types of Brakes.

4. Single Block or Shoe Brake.

5. Pivoted Block or Shoe Brake.

6. Double Block or Shoe Brake.

7. Simple Band Brake.

8. Differential Band Brake.

9. Band and Block Brake.

10. Internal Expanding Brake.

11. Braking of a Vehicle.

12. Dynamometer.

13. Types of Dynamometers.

14. Classification of Absorption

Dynamometers.

15. Prony Brake Dynamometer.

16. Rope Brake Dynamometers.

17. Classification of Transmission

Dynamometers.

18. Epicyclic-train

Dynamometers.

19. Belt Transmission

Dynamometer-Froude or

Throneycraft Transmission

Dynamometer.

20. Torsion Dynamometer.

21. Bevis Gibson Flash Light

Torsion Dynamometer.

19.1. Introduction

A brake is a device by means of which artificial

frictional resistance is applied to a moving machine member,
in order to retard or stop the motion of a machine. In the process

of performing this function, the brake absorbs either kinetic
energy of the moving member or potential energy given up by

objects being lowered by hoists, elevators etc. The energy
absorbed by brakes is dissipated in the form of heat. This heat

is dissipated in the surrounding air (or water which is circulated
through the passages in the brake drum) so that excessive

heating of the brake lining does not take place. The capacity of
a brake depends upon the following factors :

1. The unit pressure between the braking surfaces,
2. The coefficient of friction between the braking

surfaces,
3. The peripheral velocity of the brake drum,

4. The projected area of the friction surfaces, and
5. The ability of the brake to dissipate heat equivalent

to the energy being absorbed.
The major functional difference between a clutch and

a brake is that a clutch is used to keep the driving and driven
member moving together, whereas brakes are used to stop a

moving member or to control its speed.

19.2. Materials for Brake Lining

The material used for the brake lining should have the

following characteristics :
732
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1. It should have high coefficient of friction with minimum fading. In other words, the coeffi-

cient of friction should remain constant with change in temperature.

2. It should have low wear rate.

3. It should have high heat resistance.

4. It should have high heat dissipation capacity.

5. It should have adequate mechanical strength.

6. It should not be affected by moisture and oil.

The materials commonly used for facing or lining of brakes and their properties are shown in

the following table.

Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.Table 19.1. Properties of materials for brake lining.

Coefficient of friction (µ) Allowable

Material for braking lining  pressure ( p )

Dry Greasy Lubricated N/mm2

Cast iron on cast iron 0.15 – 0.2 0.06 – 0.10 0.05 – 0.10 1.0 – 1.75

Bronze on cast iron – 0.05 – 0.10 0.05 – 0.10 0.56 – 0.84

Steel on cast iron 0.20 – 0.30 0.07 – 0.12 0.06 – 0.10 0.84 – 1.40

Wood on cast iron 0.20 – 0.35 0.08 – 0.12 – 0.40 – 0.62

Fibre on metal – 0.10 – 0.20 – 0.07 – 0.28

Cork on metal 0.35 0.25 – 0.30 0.22 – 0.25 0.05 – 0.10

Leather on metal 0.30 – 0.5 0.15 – 0.20 0.12 – 0.15 0.07 – 0.28

Wire asbestos on metal 0.35 – 0.5 0.25 – 0.30 0.20 – 0.25 0.20 – 0.55

Asbestos blocks on metal 0.40 – 0.48 0.25 – 0.30 – 0.28 – 1.1

Asbestos on metal (Short – – 0.20 – 0.25 1.4 – 2.1

action)

Metal on cast iron (Short – – 0.05 – 0.10 1.4 – 2.1

action)

19.3.19.3.19.3.19.3.19.3. Types of BrakesTypes of BrakesTypes of BrakesTypes of BrakesTypes of Brakes

The brakes, according to the means used for transforming the energy by the braking  elements,

are classified as :

1.  Hydraulic brakes e.g. pumps or hydrodynamic brake

and fluid agitator,

2.  Electric brakes e.g. generators and eddy current

brakes, and

3.  Mechanical brakes.

The hydraulic and electric brakes cannot bring the

member to rest and are mostly used where large amounts of

energy are to be transformed while the brake is retarding the

load such as in laboratory dynamometers, high way trucks and

electric locomotives. These brakes are also used for retarding

or controlling the speed of a vehicle for down-hill travel.

The mechanical brakes, according to the direction of

acting force, may be divided into the following two groups :

(a) Radial brakes. In these brakes, the force acting on

the brake drum is in radial direction. The radial brakes may be Simple bicycle brakes.
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sub-divided into external brakes and internal brakes. According to the shape of the friction ele-

ments, these brakes may be block or shoe brakes and band brakes.

(b) Axial brakes. In these brakes, the force acting on the brake drum is in axial direction. The

axial brakes may be disc brakes and cone brakes. The analysis of these brakes is similar to clutches.

Since we are concerned with only mechanical brakes, therefore, these are discussed, in detail,

in the following pages.

19.4. Single Block or Shoe Brake

A single block or shoe brake is shown in Fig. 19.1. It consists of a block or shoe which is

pressed against the rim of a revolving brake wheel drum. The block is made of a softer material than

the rim of the wheel. This type of a brake is commonly used on railway trains and tram cars. The

friction between the block and the wheel causes a tangential braking force to act on the wheel, which

retard the rotation of the wheel. The block is pressed against the wheel by a force applied to one end

of a lever to which the block is rigidly fixed as shown in Fig. 19.1. The other end of the lever is

pivoted on a fixed fulcrum O.

 (a) Clockwise rotation of brake wheel                             (b) Anticlockwise rotation of brake wheel.

Fig. 19.1. Single block brake. Line of action of tangential force passes through the fulcrum of the lever.

Let             P = Force applied at the end of the lever,

          R
N

= Normal force pressing the brake block on the wheel,

              r = Radius of the wheel,

          2θ = Angle of contact surface of the block,

           µ = Coefficient of friction, and

             Ft = Tangential braking force or the frictional force acting at the contact

      surface of the block and the wheel.

If the angle of contact is less than 60°, then it may

be assumed that the normal pressure between the block and

the wheel is uniform. In such cases, tangential braking force

on the wheel,

            Ft = µ.R
N

 ...(i)

and the braking torque,   T
B
 = Ft.r = µ.R

N
.r  ... (ii)

Let us now consider the following three cases :

Case 1. When the line of action of tangential brak-

ing force (Ft ) passes through the fulcrum O of the lever,

and the brake wheel rotates clockwise as shown in Fig. 19.1

(a), then for equilibrium, taking moments about the fulcrum

O, we have

  NR x P l× = ×  or 
N

P l
R

x

×=

∴  Braking torque,

                       B N

. . . .
. .

P l P l r
T R r r

x x

µ= µ = µ × × =

When brakes are on, the pads grip the

wheel rim from either side, friction

between the pads and the rim converts

the cycle's kinetic energy into heat as

they reduce its speed.
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It may be noted that when the brake wheel rotates anticlockwise as shown in Fig. 19.1 (b),

then the braking torque is same, i.e.

          B N

. . .
. .

P l r
T R r

x

µ= µ =

Case 2. When the line of action of the tangential braking force (Ft ) passes through a distance

‘a’ below the fulcrum O, and the brake wheel rotates clockwise as shown in Fig. 19.2 (a), then for

equilibrium, taking moments about the fulcrum O,

      R
N

 × x + Ft × a = P.l  or   R
N

 × x + µ R
N

 × a = P.l     or    R
N

 = 
.

.

P l

x a+ µ

and braking torque,       B N

. . .
.

.

p l r
T R r

x a

µ= µ =
+ µ

(a)  Clockwise rotation of brake wheel.       (b) Anticlockwise rotation of brake wheel.

Fig. 19.2. Single block brake. Line of action of Ft  passes below the fulcrum.

When the brake wheel rotates anticlockwise, as shown in Fig. 19.2 (b), then for equilibrium,

         R
N

.x = P.l + F
t
.a = P.l + µ.R

N
.a ...(i)

or          R
N

 (x – µ.a) = P.l    or R
N

 = 
.

.

P l

x a− µ

and braking torque,        B N

. . .
. .

.

P l r
T R r

x a

µ= µ =
− µ

Case 3. When the line of action of the tangential braking force (Ft ) passes through a distance

‘a’ above the fulcrum O, and the brake wheel rotates clockwise as shown in Fig. 19.3 (a), then for

equilibrium, taking moments about the fulcrum O, we have

         R
N

.x = P.l + Ft . a = P.l + µ.R
N

.a . . . (ii)

or           R
N

 (x – µ.a) = P.l         or            R
N

 = 
.

.

P l

x a− µ

(a) Clockwise rotation of brake wheel.                   (b) Anticlockwise rotation of brake wheel.

Fig. 19.3. Single block brake. Line of action of Ft passes above the fulcrum.

and braking torque,       T
B
 = µ.R

N
.r = 

. . .

.

P l r

x a

µ
− µ
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When the brake wheel rotates anticlockwise as shown in Fig. 19.3 (b), then for equilibrium,

taking moments about the fulcrum O, we have

    R
N

 × x + F
t
 × a = P.l     or     R

N
 × x + µ.R

N
 × a = P.l    or    R

N
 = 

.

.

P l

x a+ µ

and braking torque,       T
B
 = µ.R

N
.r = 

. . .

.

P l r

x a

µ
+ µ

Notes : 1. From above we see that when the brake wheel rotates anticlockwise in case 2 [Fig. 19.2 (b)] and when

it rotates clockwise in case 3 [Fig. 19.3 (a)], the equations (i) and (ii) are same, i.e.

    R
N

 × x = P.l + µ.R
N
.a

From this we see that

the moment of frictional force

(µ.R
N

.a) adds to the moment

of force (P.l). In other words,

the frictional force helps to

apply the brake. Such type of

brakes are said to be self ener-

gizing brakes. When the fric-

tional force is great enough to

apply the brake with no exter-

nal force, then the brake is said

to be self-locking brake.

From the above ex-

pression, we see that if

.x a≤ µ , then P will be negative or equal to zero. This means no external force is needed to apply the brake and

hence the brake is self locking. Therefore the condition for the brake to be self locking is

.x a≤ µ
The self locking brake is used only in back-stop applications.

2. The brake should be self energizing and not the self locking.

3. In order to avoid self locking and to prevent the brake from grabbing, x is kept greater than µ . a.

4. If A
b
 is the projected bearing area of the block or shoe, then the bearing pressure on the shoe,

             p
b
 = R

N 
/ A

b

We know that       A
b
 = Width of shoe × Projected length of shoe = (2 sin )w r θ

5. When a single block or shoe brake is applied to a rolling wheel, an additional load is thrown on the

shaft bearings due to heavy normal force (R
N

) and produces bending of the shaft.

In order to overcome this drawback, a double block or shoe brake is used, as discussed in Art. 19.6.

19.5. Pivoted Block or Shoe Brake
We have discussed in the previous article that when the angle of contact is less than 60°, then

it may be assumed that the normal pressure between the block and the wheel is uniform. But

when the angle of contact is greater than 60°, then the unit

pressure normal to the surface of contact is less at the ends

than at the centre. In such cases, the block or shoe is pivoted

to the lever, as shown in Fig. 19.4, instead of being rigidly

attached to the lever. This gives uniform wear of the brake

lining in the direction of the applied force. The braking torque

for a pivoted block or shoe brake (i.e. when 2 θ  > 60°) is

given by
        B N. .tT F r R r′= × = µ

where         ′µ = Equivalent coefficient of friction = 
4 sin

2 sin 2

µ θ
θ + θ , and

           µ = Actual coefficient of friction.

These brakes have more life and may provide a higher braking torque.

Fig. 19.4. Pivoted block or shoe brake.

Shoe brakes of a racing car



Chapter 19 : Brakes and Dynamometers   �  737

Example 19.1. A single block brake is shown in Fig. 19.5.

The diameter of the drum is 250 mm and the angle of contact is

90°. If the operating force of 700 N is applied at the end of a lever

and the coefficient of friction between the drum and the lining is

0.35, determine the torque that may be transmitted by the block

brake.

Solution. Given : d = 250 mm or r = 125 mm ; 2θ = 90°

 = / 2π  rad ; P = 700 N ; µ = 0.35

Since the angle of contact is greater than 60°, therefore

equivalent coefficient of friction,

                
4 sin 4 0.35 sin 45

2 sin 2 / 2 sin 90

µ θ × × °′µ = =
θ + θ π + ° = 0.385

Let                  R
N

 = Normal force pressing the block to the brake drum, and

                  Ft = Tangential braking force = N.R′µ
Taking moments about the fulcrum O, we have

            N700(250 200) 50 200 200 200 520
0.385

t t
t t

F F
F R F+ + × = × = × = × =

′µ

or  520 Ft – 50Ft = 700 × 450    or     Ft = 700 × 450/470 = 670 N

We know that torque transmitted by the block brake,

               T
B
 = F

t
 × r = 670 × 125 = 8 3750 N-mm = 83.75N-m Ans.

Example 19.2. Fig. 19.6 shows a brake shoe

applied to a drum by a lever AB which is

 pivoted at a fixed point A and rigidly fixed to the shoe.

The radius of the drum is 160 mm. The coefficient of

friction at the brake lining is 0.3. If the drum rotates

clockwise, find the braking torque due to the horizon-

tal force of 600 N at B.

Solution. Given : r = 160 mm = 0.16 m ;

µ = 0.3 ; P = 600 N

Since the angle subtended by the shoe at the

centre of drum is 40°, therefore we need not to calcu-

late the equivalent coefficient of friction .′µ
Let RN = Normal force pressing the

block to the brake drum, and

 Ft = Tangential braking force = µ.R
N

Taking moments about point A ,

R
N

 × 350 + Ft (200 – 160) = 600 (400 + 350)

350 40 600 750
0.3

t
t

F
F× + = ×  or 1207 Ft = 450 × 103

∴                  Ft = 450 × 103/1207 = 372.8 N

We know that braking torque,

      T
B
 = Ft × r = 372.8 × 0.16 = 59.6 N-m Ans.

All dimensions in mm.

Fig. 19.5

Fig. 19.6
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19.6. Double Block or Shoe Brake

When a single block brake is applied to a rolling wheel, an additional load is thrown on the

shaft bearings due to the normal force (R
N

). This produces

bending of the shaft. In order to overcome this drawback, a double

block or shoe brake, as shown in Fig. 19.9, is used. It consists of

two brake blocks applied at the opposite ends of a diameter of

the wheel which eliminate or reduces the unbalanced force on

the shaft. The brake is set by a spring which pulls the upper ends

of the brake arms together. When a force P is applied to the bell

crank lever, the spring is compressed and the brake is released.

This type of brake is often used on electric cranes and the force

P is produced by an electromagnet or solenoid. When the current

is switched off, there is no force on the bell crank lever and the

brake is engaged automatically due to the spring force and thus

there will be no downward movement of the load.

In a double block brake, the braking action is doubled

by the use of two blocks and these blocks may be operated

practically by the same force which will operate one. In case of

double block or shoe brake, the braking torque is given by

      T
B
 = (Ft1 + Ft2) r

where Ft1 and Ft2 are the braking forces on the two blocks.

Example 19.5. A double shoe brake, as shown in Fig. 19.10,

is capable of absorbing a torque of 1400 N-m. The diameter of the

brake drum is 350 mm and the angle of contact for each shoe is 100°.

If the coefficient of friction between the brake drum and lining is

0.4 ; find 1. the spring force necessary to set the brake ; and 2. the

width of the brake shoes, if the bearing pressure on the lining

material is not to exceed 0.3 N/mm2.

Solution. Given :  T
B
 = 1400 N-m = 1400 × 103 N-mm ;

d = 350 mm or r = 175 mm ; 2θ  = 100° = 100 × π/180 = 1.75 rad;

µ = 0.4 ; p
b
 = 0.3 N/mm2

1. Spring force necessary to set the brake

Let            S  = Spring force necessary to

          set the brake.

R
N1

 and Ft1 = Normal reaction and the

        braking force on the right

           hand side shoe, and

 R
N2

 and Ft2 = Corresponding values on

           the left hand side shoe.

Since the angle of contact is greater than

60°, therefore equivalent coefficient of friction,

         
4 sin 4 0.4 sin 50

0.45
2 sin 2 1.75 sin100

µ θ × × °µ′ = = =
θ + θ + °

Fig. 19.9. Double block or shoe

 brake.

All dimensions in mm.

Fig. 19.10

Brakes on a railway coach.
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Taking moments about the fulcrum O
1
, we have

         
1

N1 1 1 1450 200 (175 40) 200 135 579.4
0.45

t t
t

t

F
S R F F F× = × + − = × + × =

. . . 
1

N1Substituting tF
R

 
= ′µ 

∴   Ft1 = S × 450 / 579.4 = 0.776 S

Again taking moments about O2, we have

            
2

2 N2 2450 (175 40) 200 200 444.4
0.45

t
t t

F
S F R F× + − = × = × =

. . .
2

N2Substituting tF
R

 
= ′µ 

      444.4 Ft2 – 135Ft2 = S × 450   or   309.4 Ft2 = S × 450

∴  Ft2 = S × 450 / 309.4 = 1.454 S

We know that torque capacity of the brake (T
B
),

  1400 × 103  = (Ft1 + Ft2 ) r = (0.776 S + 1.454 S) 175 = 390.25 S

∴     S = 1400 × 103/390.25 = 3587 N Ans.

2. Width of the brake shoes

Let     b = Width of the brake shoes in mm.

We know that projected bearing area for one shoe,

2(2 sin ) (2 175sin 50 ) 268 mmbA b r b b= θ = × ° =
Normal force on the right hand side of the shoe,

1
N1

0.776 0.776 3587
6186 N

0.45 0.45

tF S
R

× ×= = = =
′µ

and normal force on the left hand side of the shoe,

             
2

N2

1.454 1.454 3587
11 590 N

0.45 0.45

tF S
R

× ×= = = =
′µ

We see that the maximum normal force is on the left hand side of the shoe. Therefore we shall

find the width of the shoe for the maximum normal force i.e. R
N2

.

We know that the bearing pressure on the lining material ( p
b
),

 
N2 11 590 43.25

0.3
268b

R

A b b
= = =

∴                  b = 43.25 / 0.3 = 144.2 mm Ans.

19.7. Simple Band Brake

A band brake consists of a flexible band of leather, one or more ropes,or a steel lined with

friction material, which embraces a part of the circumference of the drum. A band brake, as shown in

Fig. 19.11, is called a simple band brake in which one end of the band is attached to a fixed pin or

fulcrum of the lever while the other end is attached to the lever at a distance b from the fulcrum.

When a force P is applied to the lever at C, the lever turns about the fulcrum pin O and tightens

the band on the drum and hence the brakes are applied. The friction between the band and the drum

provides the braking force. The force P on the lever at C may be determined as discussed below :

Let T
1
 = Tension in the tight side of the band,

T
2
 = Tension in the slack side of the band,



742  �   Theory of Machines

θ  = Angle of lap (or embrace) of the band on the drum,

 µ = Coefficient of friction between the band and the drum,

  r = Radius of the drum,

  t = Thickness of the band, and

re = Effective radius of the drum = 
2

+ t
r

(a) Clockwise rotation of drum. (b) Anticlockwise rotation of drum.

Fig. 19.11. Simple band brake.

We know that limiting ratio of the tensions is given by the relation,

             
1

2

µθ=T
e

T
or

1

2

2.3log .
T

T

 
= µθ 

 
and braking force on the drum = T

1
 – T

2

∴  Braking torque on the drum,

              T
B
 = (T

1
 – T

2
) r . . . (Neglecting thickness of band)

    = (T
1
 – T

2
) r

e
 . . . (Considering thickness of band)

Now considering the equilibrium of the lever OBC. It may be noted that when the drum

rotates in the clockwise direction, as shown in Fig. 19.11 (a), the end of the band attached to the

fulcrum O will be slack with tension T
2
 and end of the band attached to B will be tight with tension T

1
.

On the other hand, when the drum rotates in the anticlockwise direction, as shown in Fig. 19.11 (b),

the tensions in the band will reverse, i.e. the end of the band attached to the fulcrum O will be tight

with tension T
1
 and the end of the band attached to B will be slack with tension T

2
. Now taking

moments about the fulcrum O, we have

           P.l = T
1
.b . . . (For clockwise rotation of the drum)

and            P.l = T
2
.b  . . . (For anticlockwise rotation of the drum)

Band brake Bands of a brake shown separately
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where   l = Length of the lever from the fulcrum (OC), and

 b = Perpendicular distance from O to the line of action of T
1
  or T

2
.

Notes : 1. When the brake band is attached to the lever, as shown in Fig. 19.11 (a) and (b), then the force (P)

must act in the upward direction in order to tighten the band on the drum.

2. If the permissible tensile stress ( σ ) for the material of the band is known, then maximum tension in

the band is given by

T
1
 = . .σ wt

where w = Width of the band, and

  t = thickness of the band.

Example 19.6. A band brake acts on the 3/4th of circumference of a drum of 450 mm diam-

eter which is keyed to the shaft. The band brake provides a braking torque of 225 N-m. One end of

the band is attached to a fulcrum pin of the lever and the other end to a pin 100 mm from the fulcrum.

If the operating force is applied at 500 mm from the fulcrum and the coefficient of friction is 0.25,

find the operating force when the drum rotates in the (a) anticlockwise direction, and (b) clockwise

direction.

Solution. Given : d = 450 mm or r = 225 mm = 0.225 m ; T
B
 = 225 N-m ; b = OB = 100 mm

= 0.1 m ; l = 500 mm = 0.5 m ; µ = 0.25

Let    P = Operating force.

(a) Operating force when drum rotates in anticlockwise

direction

The band brake is shown in Fig. 19.11. Since one

end of the band is attached to the fulcrum at O, therefore the

operating force P will act upward and when the drum ro-

tates anticlockwise, as shown in Fig. 19.11 (b), the end of

the band attached to O will be tight with tension T
1
 and the

end of the band attached to B will be slack with tension T
2
.

First of all, let us find the tensions T
1
  and T

2
.

We know that angle of wrap,

                                
3 3

th of circumference = 360 270
4 4

θ = × ° = °

     270 /180 4.713 rad= ×π =

and                1

1

2.3log . 0.25 4.713 1.178
T

T

 
= µ θ = × = 

 

∴                  1

2

1.178
log 0.5123

2.3

 
= = 

 

T

T
 or 1

2

3.253=T

T
. . . (i)

. . . (Taking antilog of 0.5123)

We know that braking torque (T
B
),

             225 = (T
1
 – T

2
) r = (T

1
 – T

2
) 0.225

∴                    T
1
 – T

2
 = 225 / 0.225 = 1000 N . . . (ii)

From equations (i) and (ii), we have

  T
1
 = 1444 N;  and      T

2
 = 444 N

Now taking moments about the fulcrum O, we have

          P × l = T
2
.b       or        P × 0.5 = 444 × 0.1 = 44.4

∴                 P = 44.4 / 0.5 = 88.8 N Ans.

Drums for band brakes.
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(b) Operating force when drum rotates in clockwise direction

When the drum rotates in clockwise direction, as shown in Fig.19.11 (a), then taking mo-

ments about the fulcrum O, we have

        P × l = T
1
. b        or       P × 0.5 = 1444 × 0.1 = 144.4

∴ P = 144.4 / 0.5 = 288.8 N Ans.

Example 19.7. The simple band brake, as shown in Fig. 19.12, is applied to a shaft carrying

a flywheel of mass 400 kg. The radius of gyration of the flywheel is 450 mm and runs at 300 r.p.m.

If the coefficient of friction is 0.2 and the brake drum

diameter is 240 mm, find :

1. the torque applied due to a hand load of 100 N,

2. the number of turns of the wheel before it is brought to

rest, and

3. the time required to bring it to rest, from the moment of

the application of the brake.

Solution. Given :  m = 400 kg ; k = 450 mm = 0.45 m ;

N = 300 r.p.m. or 2 300 / 60ω = π×  = 31.42 rad/s ; µ = 0.2 ;

d = 240 mm = 0.24 m or r = 0.12 m

1. Torque applied due to hand load

First of all, let us find the tensions in the tight and slack sides of the band i.e. T
1
 and T

2

respectively.

From the geometry of the Fig. 19.12, angle of lap of the band on the drum,

         360 150 210 210 3.666 rad
180

πθ = ° − ° = ° = × =

We know that

     
1

2

2.3log . 0.2 3.666 0.7332
 

= µ θ = × = 
 

T

T

           1

2

0.7332
log 0.3188

2.3

 
= = 

 

T

T
       or

1

2

2.08=T

T
. . . (i)

... (Taking antilog of 0.3188)

Taking moments about the fulcrum O,

           T2 × 120 = 100 × 300 = 30 000 or  T2 = 30 000/120 = 250 N

∴                      T1 = 2.08T2 = 2.08 × 250 = 520 N  . . . [From equation (i)]

We know that torque applied,

       TB = (T1 – T2 ) r =  (520 – 250) 0.12 = 32.4 N-m Ans.

2. Number of turns of the wheel before it is brought to rest

Let          n = Number of turns of the wheel before it is brought to rest.

We know that kinetic energy of rotation of the drum

           
2 2 2 2 21 1 1

. . . 400(0.45) (31.42)
2 2 2

= × ω = × ω = ×I m k = 40 000 N-m

This energy is used to overcome the work done due to the braking torque (TB).

∴              40 000 = T
B
 × 2πn  = 32.4 × 2πn  = 203.6 n

or          n = 40 000 / 203.6 = 196.5 Ans.

All dimensions in mm.

Fig. 19.12



Chapter 19 : Brakes and Dynamometers   �  745

3. Time required to bring the wheel to rest

We know that the time required to bring the wheel to rest

= n / N = 196.5 / 300 = 0.655 min = 39.3 s Ans.

Example 19.8. A simple band brake operates on a drum of 600 mm in diameter that is

running at 200 r.p.m. The coefficient of friction is 0.25. The brake band has a contact of 270°, one

end is fastened to a fixed pin and the other end to the brake arm 125 mm from the fixed pin. The

straight brake arm is 750 mm long and placed perpendicular to the diameter that bisects the angle of

contact.

1. What is the pull necessary on the end of the brake

arm to stop the wheel if 35 kW is being absorbed ? What is the

direction for this minimum pull ?

2. What width of steel band of 2.5 mm thick is required

for this brake if the maximum tensile stress is not to exceed

50 N/mm2 ?

Solution. Given : d = 600 mm or r = 300 mm ;

N = 200 r.p.m. ; µ = 0.25 ; 270 270 /180θ = ° = × π =4.713 rad ;

Power = 35 kW = 35 × 103 W ; t = 2.5 mm ; σ  = 50 N/mm2

1. Pull necessary on the end of the brake arm to stop the wheel

Let P = Pull necessary on the end of the brake arm to

stop the wheel.

The simple band brake is shown in Fig. 19.13. Since one end of the band is attached to the

fixed pin O, therefore the pull P on the end of the brake arm will act upward and when the wheel

rotates anticlockwise, the end of the band attached to O will be tight with tension T
1
 and the end of the

band attached to B will be slack with tension T
2
. First of all, let us find the tensions T

1
 and T

2
. We

know that

     
1

2

2.3log . 0.25 4.713 1.178
T

T

 
= µ θ = × = 

 

∴      1

2

1.178
log 0.5122

2.3

T

T

 
= = 

 
 or  1

2

3.25
T

T
=      ... (Taking antilog of 0.5122)  ... (i)

Let  T
B
 = Braking torque.

We know that power absorbed,

       
3 B B

B

2 . 2 200
35 10 21

60 60

N T T
T

π× π× ×
× = = =

∴                3 3
B 35 10 / 21 1667 N-m 1667 10 N-mmT = × = = ×

We also know that braking torque (T
B

),

  1667 × 103 = (T
1
 – T

2
)  r = (T

1
 – T

2
) 300

∴                     T
1
 – T

2
 = 1167 × 103/300 = 5556 N ...(ii)

From equations (i) and (ii), we find that

  T
1
 = 8025 N; and T

2
 = 2469 N

Fig. 19.13

All dimensions in mm
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Now taking moments about O, we have

              P × 750 = T
2
 × *OD = T

2
 × 62.5 2  = 2469 × 88.4 = 218 260

∴                       P = 218260 / 750 = 291 N Ans.

2.  Width of steel band

Let         w = Width of steel band in mm.

We know that maximum tension in the band (T
1
),

    8025 = . .wtσ  = 50 × w × 2.5 = 125 w

∴          w = 8025 / 125 = 64.2 mm Ans.

19.8. Differential Band Brake

In a differential band brake, as shown in Fig. 19.14, the ends of the band are joined at A and

B to a lever AOC pivoted on a fixed pin or fulcrum O. It may be noted that for the band to tighten, the

length OA must be greater than the length OB.

    (a) Clockwise rotation of the drum. (a) Anticlockwise rotation of the drum.

Fig. 19.14.  Differential band brake.

The braking torque on the drum may be obtained

in the similar way as discussed in simple band brake. Now

considering the equilibrium of the lever AOC. It may be

noted that when the drum rotates in the clockwise direc-

tion, as shown in Fig. 19.14 (a), the end of the band

attached to A will be slack with tension T
2
 and end of the

band attached to B will be tight with tension T
1
. On the

other hand, when the drum rotates in the anticlockwise

direction, as shown in Fig. 19.14 (b), the end of the band

attached to A will be tight with tension T
1
 and end of the

band attached to B will be slack with tension T
2
. Now

taking moments about the fulcrum O, we have

 P.l  + T
1
.b = T

2
.a

... (For clockwise rotation of the drum )

or                     P.l = T
2
.a – T

1
.b  ... (i)

and        P.l + T
2
.b = T

1
.a

... (For anticlockwise rotation of the drum )

or         P.l = T
1
.a – T

2
.b ... (ii)

* OD = Perpendicular distance from O to the line of action of tension T
2
.

OE = EB = OB/2 = 125/2 = 62.5 mm, and ∠ DOE  = 45°

 ∴ OD = OE sec 45° = 62.5 2 mm

Tractors  are specially made to move on

rough terrain and  exert high power at

low speeds.

Note : This picture is given as additional

information and is not a direct example of the

current chapter.
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We have discussed in block brakes (Art. 19.4), that when the frictional force helps to apply

the brake, it is said to be self energizing brake. In case of differential band brake, we see from equa-

tions (i) and (ii) that the moment T
1
.b and T

2
.b helps in applying the brake (because it adds to the

moment P.l ) for the clockwise and anticlockwise rotation of the drum respectively.

We have also discussed that when the force P is negative or zero, then brake is self locking.

Thus for differential band brake and for clockwise rotation of the drum, the condition for self locking

is

2 1. .T a T b≤ or 2 1/ /T T b a≤
and for anticlockwise rotation of the drum, the condition for self locking is

1 2. .T a T b≤ or 1 2/ /T T b a≤
Notes : 1.  The condition for self locking may also be written as follows :

    For clockwise rotation of the drum,

1 2. .T b T a≥ or 1 2/ /T T a b≥
and for anticlockwise rotation of the drum,

2 1. .T b T a≥ or 1 2/ /T T a b≥
2. When in Fig. 19.14 (a) and (b), the length OB is greater than OA, then the force P must act in the

upward direction in order to apply the brake. The tensions in the band, i.e. T
1
 and T

2
 will remain unchanged.

Example 19.9. In a winch, the rope supports a load W and is wound round a barrel 450 mm

diameter. A differential band brake acts on a drum 800 mm diameter which is keyed to the same shaft

as the barrel. The two ends of the bands are attached to pins on opposite sides of the fulcrum of the

brake lever and at distances of 25 mm and 100 mm from the fulcrum. The angle of lap of the brake

band is 250° and the coefficient of friction is 0.25. What is the maximum load W which can be

supported by the brake when a force of 750 N is applied to the lever at a distance of 3000 mm from

the fulcrum ?

Solution. Given : D = 450 mm or R = 225 mm ; d = 800 mm or r = 400 mm ; OB = 25 mm ;

OA = 100 mm ; θ  = 250° = 250 × π/180 = 4.364 rad ;

µ = 0.25 ; P = 750 N ; l = OC = 3000 mm

Since OA is greater than OB, therefore the

operating force (P = 750 N) will act downwards.

First of all, let us consider that the drum rotates

in clockwise direction.

We know that when the drum rotates in clock-

wise direction, the end of band attached to A  will be

slack with tension T
2
 and the end of the band attached

to B will be tight with tension T
1
, as shown in Fig. 19.15.

Now let us find out the values of tensions T
1
 and T

2
. We

know that

1

2

2.3log . 0.25 4.364 1.091
T

T

 
= µ θ = × = 

 

∴    1

2

1.091
log 0.4743

2.3

T

T

 
= = 

 
 or 1

2

2.98
T

T
= ... (Taking antilog of 0.4743)

and                        T
1
 = 2.98 T

2
... (i)

Now taking moments about the fulcrum O,

    750 × 3000 + T
1
 × 25 = T

2
 × 100

All dimensions in mm.

Fig. 19.15
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or T
2
 × 100 – 2.98 T

2
 × 25 = 2250 × 103  ... (�  T

1
 = 2.98 T

2
)

 25.5 T
2

= 2250 × 103 or T
2
 = 2250 × 103/25.5 = 88 × 103 N

and         T
1

= 2.98T
2
 = 2.98 × 88 × 103 = 262 × 103 N

We know that braking torque,

       T
B

= (T
1
 – T

2
) r

= (262 × 103 – 88 × 103) 400 = 69.6 × 106 N-mm ...(i)

and the torque due to load W newtons,

      T
W

 = W.R = W × 225 = 225 W N-mm ... (ii)

Since the braking torque must be equal to the torque due to load W  newtons, therefore from

equations (i) and (ii),

      W  = 69.6 × 106/225 = 309 × 103 N = 309 kN

Now let us consider that the drum rotates in

anticlockwise direction. We know that when the drum rotates

in anticlockwise direction, the end of the band attached to A

will be tight with tension T
1
 and end of the band attached to

B will be slack with tension T
2
, as shown in Fig. 19.16. The

ratio of tensions T
1
 and T

2
 will be same as calculated above,

i.e.

       1

2

2.98
T

T
=  or T

1
 = 2.98 T

2

Now taking moments about the fulcrum O,

       750 × 3000 + T
2
 × 25 = T

1
 × 100

or 2.98 T
2
 × 100 – T

2
× 25 = 2250 × 103  ... (�  T

1
 = 2.98 T

2
)

273 T
2
 = 2250 × 103      or      T

2
 = 2250 × 103/273 = 8242 N

and         T
1
 = 2.98 T

2
 = 2.98 × 8242 = 24 561 N

∴        Braking torque, T
B
 = (T

1
 × T

2
) r

           = (24 561 – 8242)400 = 6.53 × 106 N-mm ...(iii)

From equations (ii) and (iii),

W = 6.53 × 106/225 = 29 × 103 N = 29 kN

From above, we see that the maximum load (W ) that can be supported by the brake is 309 kN,

when the drum rotates in clockwise direction. Ans.

Example 19.10. A differential band brake, as shown in Fig. 19.17, has an angle of contact of

225°. The band has a compressed woven lining and bears against a cast iron drum of 350 mm

diameter. The brake is to sustain a torque of 350 N-m and the coefficient of friction between the band

and the drum is 0.3. Find : 1. The necessary force (P) for the clockwise and anticlockwise rotation of

the drum; and 2. The value of ‘OA’ for the brake to be self locking, when the drum rotates clockwise.

Solution. Given: θ = 225° = 225 × π/180 = 3.93 rad ; d = 350 mm    or   r = 175 mm ;

T = 350 N-m = 350 × 103 N-mm

1. Necessary force (P) for the clockwise and anticlockwise rotation of the drum

When the drum rotates in the clockwise direction, the end of the band attached to A will be

slack with tension T
2
 and the end of the band attached to B will be tight with tension T

1
, as shown in

Fig. 19.18. First of all, let us find the values of tensions T
1
 and T

2
.

All dimensions in mm.

Fig. 19.16
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All dimensions in mm.

     Fig. 19.17   Fig. 19.18

We know that

      
1

2

2.3log . 0.3 3.93 1.179
T

T

 
= µ θ = × = 

 

∴         1

2

1.179
log 0.5126

2.3

T

T

 
= = 

 
     or    1

2

3.255
T

T
= ... (Taking antilog of 0.5126 ) ... (i)

and braking torque (T
B
),

          350 × 103 = (T
1
 – T

2
)r = (T

1
 – T

2
) 175

∴           T
1
 – T

2
 = 350 × 103/175 = 2000 N  ... (ii)

From equations (i) and (ii), we find that

        T
1
 = 2887 N ; and T

2
 = 887 N

Now taking moments about the fulcrum O, we have

            P × 500 = T
2
 × 150 – T

1
 × 35 = 887 × 150 – 2887 × 35 = 32 ×103

∴          P = 32 × 103/500 = 64 N Ans.

When the drum rotates in the anticlockwise

direction, the end of the band attached to A will be tight

with tension T
1
 and end of the band attached to B will

be slack with tension T
2
, as shown in Fig. 19.19. Taking

moments about the fulcrum O, we have

             P × 500 = T
1
 × 150 – T

2
 × 35

            = 2887 × 150 – 887 × 35

            = 402 × 103

          P = 402 × 103/500 = 804 N  Ans.

2. Value of ‘OA’ for the brake to be self locking, when

the drum rotates clockwise

The clockwise rotation of the drum is shown in Fig 19.18.

For clockwise rotation of the drum, we know that

            P × 500 = T
2
 × OA – T

1
 × OB

For the brake to be self locking, P must be equal to zero. Therefore

             T
2
 × OA = T

1
 × OB

and      
1

2

2887 35

887

T OB
OA

T

× ×= =  = 114 mm Ans.

Fig. 19.19
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19.9. Band and Block Brake

The band brake may be lined with blocks of wood or other material, as shown in Fig. 19.20

(a). The friction between the blocks and the drum provides braking action. Let there are ‘n’ number

of blocks, each subtending an angle 2θ  at the centre and the drum rotates in anticlockwise direction.

(a) (b)

Fig. 19.20. Band and block brake.

Let T
1
 = Tension in the tight side,

T
2
 = Tension in the slack side,

 µ = Coefficient of friction between the blocks and drum,

1T ′ = Tension in the band between the first and second block,

               2 3,T T′ ′  etc.= Tensions in the band between the second and third block,

         between the third and fourth block etc.

Consider one of the blocks (say first block) as shown in Fig. 19.20 (b). This is in equilibrium

under the action of the following forces :

1. Tension in the tight side (T
1
),

2. Tension in the slack side (
1T ′ ) or tension in the band between the first and second block,

3. Normal reaction of the drum on the block (R
N

), and

4. The force of friction ( µ.R
N

 ).

Resolving the forces radially, we have

1 1 N( )sinT T R′+ θ =  ... (i)

Resolving the forces tangentially, we have

1 1 N( ) cos .T T R′+ θ = µ  ... (ii)

Dividing equation (ii) by (i), we have

N1 1

N1 1

.( ) cos

( ) sin

RT T

RT T

′ µ− θ =
′+ θ

or
1 1 1 1( ) tan ( )T T T T′ ′− = µ θ +

∴     1

1

1 tan

1 tan

T

T

+ µ θ=
− µ θ′

Similarly, it can be proved for each of the blocks that

                  
3 11 2

22 3 4

1 tan
........

1 tan

nT TT T

TT T T

−′′ ′ + µ θ= = = =
− µ θ′ ′ ′
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∴              
11 1 1 2

2 21 2 3

1 tan
.........

1 tan

n
nTT T T T

T TT T T

−′ ′  + µ θ= × × × × = − µ θ′ ′ ′  
 ... (iii)

Braking torque on the drum of effective radius r
e
,

   T
B
 = (T

1
 – T

2
) r

e

        = (T
1
 – T

2
) r  ... [Neglecting thickness of band]

Note : For the first block, the tension in the tight side is T
1
 and in the slack side is 1T ′  and for the second block,

the tension in the tight side is  1T ′ and in the slack side is 2T ′ . Similarly for the third block, the tension in the

tight side is 2T ′  and in the slack side is 3T ′ and so on. For the last block, the tension in the tight side is

Tn-1
 and in the slack side is T

2
.

Example 19.11. In the band and block brake

shown in Fig. 19.21, the band is lined with 12 blocks

each of which subtends an angle of 15° at the centre

of the rotating drum. The thickness of the blocks is 75

mm and the diameter of the drum is 850 mm. If, when

the brake is in action, the greatest and least tensions

in the brake strap are T
1
 and T

2
, show that

12

1

2

1 tan 7.5

1 tan 7.5

T

T

 + µ °=  − µ ° 
, where µ is the

coefficient of friction for the blocks.

With the lever arrangement as shown in

Fig.19.21, find the least force required at C for the

blocks to absorb 225 kW at 240 r.p.m. The coefficient

of friction between the band and blocks is 0.4.

Solution. Given : n = 12 ;    2θ  = 15°  or  θ  = 7.5°;   t = 75 mm = 0.075 m ;   d = 850 mm

= 0.85 m ;    Power = 225 kW = 225 × 103 W ;    N = 240 r.p.m.;    µ = 0.4

Since OA > OB, therefore the force at C must act downward. Also, the drum rotates clock-

wise, therefore the end of the band attached to A will be slack with tension T
2
 (least tension) and the

end of the band attached to B will be tight with tension T
1
 (greatest tension).

Consider one of the blocks (say first block) as shown in Fig. 19.22. This is in equilibrium

under the action of the following four forces :

1. Tension in the tight side (T
1
),

2. Tension in the slack side (
1T ′ ) or the tension in the band between the first and second block,

3. Normal reaction of the drum on the block (R
N

), and

4. The force of friction ( µ.R
N

 ).

Resolving the forces radially, we have

1 1 N( )sin 7.5T T R′+ ° = ... (i)

Resolving the forces tangentially, we have

1 1 N( ) cos 7.5 .T T R′− ° = µ ... (ii)

Dividing equation (ii) by (i), we have

1 1

1 1

( ) cos 7.5

( )sin 7.5

′− ° = µ
′+ °

T T

T T
    or   

1 1

1 1

tan 7.5
T T

T T

′− = µ °
′+

All dimensions in mm.

Fig. 19.21

Fig. 19.22
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∴  
1 1 1 1. tan 7.5 . tan 7.5T T T T′ ′− = µ ° + µ °

or                
1 1(1 tan 7.5 ) (1 tan 7.5 )T T ′− µ ° = + µ °

∴                       1

1

1 tan 7.5

1 tan 7.5

T

T

 + µ °=  − µ °′  

Similarly, for the other blocks, the ratio of tensions 
1 2

2 3

T T

T T

′ ′
=

′ ′
 etc. remains constant.

 Therefore for 12 blocks having greatest tension T
1
 and least tension T

2
 is

        

12
1

2

1 tan 7.5

1 tan 7.5

T

T

 + µ °=  − µ ° 
Least force required at C

Let         P = Least force required at C.

We know that diameter of band,

         D = d + 2t = 0.85 + 2 × 0.075 = 1 m

∴ Power absorbed  = 
1 2( ) .

60

T T D N− π

or                
3

1 2
Power 60 225 10 60

1 240
T T

DN

× × ×− = =
π π× ×

= 17 900 N  ... (iii)

We have proved that

              

12 12 12
1

2

1 tan 7.5 1 0.4 0.1317 1.0527
3.55

1 tan 7.5 1 0.4 0.1317 0.9473

 + µ ° + ×   = = = =     − µ ° − ×    

T

T

... (iv)

From equations (iii) and (iv), we find that

       T
1
 = 24  920 N, and T

2
 = 7020 N

Now taking moments about O, we have

              P × 500 = T
2
 × 150 – T

1
 × 30 = 7020 × 150 – 24 920 × 30 = 305 400

∴           P = 305 400 / 500 = 610.8 N Ans.

Example 19.12.  A band and block brake, having 14 blocks each of which subtends an angle

of 15° at the centre, is applied to a drum of 1 m effective diameter. The drum and flywheel mounted

on the same shaft has a mass of 2000 kg and a combined radius of gyration of 500 mm. The two ends

of the band are attached to pins on opposite sides of the brake lever at distances of 30 mm and 120

mm from the fulcrum. If a force of 200 N is applied at a distance of 750 mm from the fulcrum, find:

1. maximum braking torque, 2. angular retardation of the drum, and 3. time taken by the

system to come to rest from the rated speed of 360 r.p.m.

The coefficient of friction between blocks and drum may be taken as 0.25.

Solution. Given : n = 14 ; 2θ  = 15°     or   θ  = 7.5° ;   d = 1 m    or    r = 0.5 m ;    m = 2000 kg ;

k = 500 mm = 0.5 m ;    P = 200 N ;    N = 360 r.p.m. ;    l = 750 mm ;    µ = 0.25

1. Maximum braking torque

The braking torque will be maximum when OB > OA and the drum rotates anticlockwise as

shown in Fig. 19.23. The force P must act upwards and the end of the band attached to A is tight under

tension T
1
 and the end of the band attached to B is slack under tension T

2
.
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Taking moments about O,

           200 × 750 + T
1
 × 30 = T

2
 × 120

        12 T2 – 3T1 = 15 000              . . . (i)

We know that             
1

2

1 tan

1 tan

n
T

T

 + µ θ=  − µ θ 

          = 

14
1 0.25 tan 7.5

1 0.25 tan 7.5

+ ° 
 − ° 

          = 

14
1 0.25 0.1317

1 .025 0.1317

+ × 
 − × 

          = (1.068)14 = 2.512 . . . (ii)

From equations (i) and (ii),

                 T
1
 = 8440 N, and T

2
 = 3360 N

We know that maximum braking torque,

                   B 1 2( ) (8440 3360)0.5 2540 N-mT T T r= − = − = Ans.

2.  Angular retardation of the drum

Let                  α  = Angular retardation of the drum.

We know that braking torque (T
B 

),

              2 22540 . . . 2000(0.5) 500I m k= α = α = α = α

∴                                 2540 / 500α = = 5.08 rad/s2 Ans.

3.  Time taken by the system to come to rest

Let                     t = Required time.

Since the system is to come to rest from the rated speed of 360 r.p.m., therefore

Initial angular speed, 1 2 360 / 60 37.7 rad/sω = π× =

and final angular speed, 2 0ω =

We know that 2 1 .tω = ω −α  . . . (– ve sign due to retardation )

∴                   1 / 37.7 / 5.08t = ω α =  = 7.42 s Ans.

19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake19.10. Internal Expanding Brake

An internal expanding brake consists of two shoes S
1
 and S

2
 as shown in Fig. 19.24. The

outer surface of the shoes are lined with some friction material (usually with Ferodo) to increase the

coefficient of friction and to prevent wearing away of the metal. Each shoe is pivoted at one end about

a fixed fulcrum O
1
 and O

2
 and made to contact a cam at the other end. When the cam rotates, the

shoes are pushed outwards against the rim of the drum. The friction between the shoes and the drum

produces the braking torque and hence reduces the speed of the drum. The shoes are normally held in

off position by a spring as shown in Fig. 19.24. The drum encloses the entire mechanism to keep out

dust and moisture. This type of brake is commonly used in motor cars and light trucks.

All dimensions in mm

Fig. 19.23
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Fig. 19.24. Internal expanding brake. Fig. 19.25. Forces on an internal expanding brake.

We shall now consider the forces acting on such a brake, when the drum rotates in the

anticlockwise direction as shown in Fig. 19.25. It may be noted that for the anticlockwise direction,

the left hand shoe is known as leading or primary shoe while the right hand shoe is known as trailing

or secondary shoe.

Let  r = Internal radius of the wheel rim,

 b =  Width of the brake lining,

p
1
 = Maximum intensity of normal

        pressure,

            p
N

 = Normal pressure,

F1 = Force exerted by the cam on

        the leading shoe, and

F2 = Force exerted by the cam on

        the trailing shoe.

Consider a small element of the brake lining

AC subtending an angle δθ  at the centre. Let OA

makes an angle θ with OO
1
 as shown in Fig. 19.25. It

is assumed that the pressure distribution on the shoe

is nearly uniform, however the friction lining wears

out more at the free end. Since the shoe turns about

O
1
, therefore the rate of wear of the shoe lining at A

will be proportional to the radial displacement of that point. The rate of wear of the shoe lining varies

directly as the perpendicular distance from O
1
 to OA, i.e. O

1
B. From the geometry of the figure,

                 O
1
B = OO

1
 sin θ

and normal pressure at A,

         N 1N
sin or sinp p p∝ θ = θ

∴      Normal force acting on the element,

 NRδ  = Normal pressure × Area of the element

          = 1N
( . . ) sin ( . . )p b r p b rδθ = θ δθ

and braking or friction force on the element,

    N 1
. sin ( . . )F R p b rδ = µ ×δ = µ θ δθ

∴   Braking torque due to the element about O,     

                 2
B 1 1. sin ( . . ) . (sin . )T F r p b r r p b rδ = δ × = µ θ δθ = µ θ δθ

Internal expanding brake.

Loading Shoe

Return Spring

40 mm

70 mm overall,
50 mm spring,
one on each

side

135 mm

35 mm 25 mm

Trailing

Shoe

110 mm overall

(behind shoes)
60 mm overall, 25 mm

spring

Lever
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and total braking torque about O for whole of one shoe,

         [ ]
2

2

1

1

2 2
B 1 1sin cosT p b r d p b r

θ
θ

θ
θ

= µ θ θ = µ − θ∫
= 

2
1 21

(cos cos )p brµ θ − θ

Moment of normal force NRδ  of the element about the fulcrum O
1
,

   N N 1 N 1( sin )M R O B R OOδ = δ × =δ θ

= 
1

2
1 1 1sin ( . . ) ( sin ) sin ( . . )p b r OO p b r OOθ δθ θ = θ δθ

∴   Total moment of normal forces about the fulcrum O
1
,

     

2 2

1 1

2 2
N 1 1 11

sin ( . . ) . . . sinM p b r OO p b r OO d

θ θ

θ θ

= θ δθ = θ θ∫ ∫

= 

2

1

1 1

1
. . . (1 cos 2 )

2
p b r OO d

θ

θ

− θ θ∫        ...
2 1

sin (1 cos2 )
2

 θ = − θ  
∵

= 

2

1

11

1 sin 2
. . .

2 2
p b r OO

θ

θ

θ θ −  

= 
2 1

1 2 11

sin 2 sin 21
. . .

2 2 2
p b r OO

θ θ θ − − θ +  

= 1 2 1 1 21

1 1
. . . ( ) (sin 2 sin 2 )

2 2
p b r OO

 θ − θ + θ − θ  
Moment of frictional force Fδ  about the fulcrum O

1
,

      F 1( cos )M F AB F r OOδ = δ × = δ − θ ... (∵  AB = r – OO
1
 cos θ )

11
sin ( . . ) ( cos )p b r r OO= µ θ δθ − θ

1 1. . . ( sin sin cos )p b r r OO= µ θ − θ θ δθ

= 
1

1. . . sin sin 2
2

OO
p b r r

 µ θ− θ δθ  
... ( 2sin cos sin2 )θ θ = θ∵

∴    Total moment of frictional force about the fulcrum O
1
,

         M
F
 =

2

1

1
1 sin sin 2

2

OO
p b r r d

θ

θ

 µ θ − θ θ  ∫
2

1

1
1 cos cos 2

4

OO
p b r r

θ

θ

 = µ − θ + θ  

        = 
1 1

1 2 2 1 1cos cos 2 cos cos 2
4 4

OO OO
p b r r r

 µ − θ + θ + θ − θ  

        = 
1

1 1 2 2 1(cos cos ) (cos 2 cos 2 )
4

OO
p b r r

 µ θ − θ + θ − θ  

Internal exparding brake.
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Now for leading shoe, taking moments about the fulcrum O
1
,

   F
1
 × l = M

N
 – M

F

and for trailing shoe, taking moments about the fulcrum O
2
,

 F
2
 × l  = M

N
 + M

F

Note : If M
F
 > M

N
, then the brake becomes self locking.

Example 19.13. The arrangement of an internal expanding friction brake, in which the

brake shoe is pivoted at ‘C’ is shown in Fig. 19.26. The distance ‘CO’ is 75 mm, O being the centre

of the drum. The internal radius of the brake drum is

100 mm. The friction lining extends over an arc AB, such

that the angle AOC is 135° and angle BOC is 45°. The

brake is applied by means of a force at Q, perpendicular

to the line CQ, the distance CQ being 150 mm.

The local rate of wear on the lining may be taken as

proportional to the normal pressure on an element at an

angle of ‘ θ ’ with OC and may be taken as equal to

 p1 sin θ , where p1 is the maximum intensity of normal

pressure.

The coefficient of friction may be taken as 0.4 and

the braking torque required is 21 N-m. Calculate the force

Q required to operate the brake when 1. The drum rotates

clockwise, and 2. The drum rotates anticlockwise.

Solution. Given : OC = 75 mm ; r = 100 mm ;

2θ  = 135° = 135 × π /180 = 2.356 rad ; 1θ  = 45° = 45 × π/180 = 0.786 rad ; l = 150 mm ;

µ  = 0.4 ; T
B
 = 21 N-m = 21 × 103 N-mm

1. Force ‘Q’ required to operate the brake when drum rotates clockwise

We know that total braking torque due to shoe (TB ),

 
1

3 2
1 221 10 . . . (cos cos )p b r× = µ θ − θ

1

2
10.4 (100) (cos 45 cos135 ) 5656 .p b p b= × × ° − ° =

∴ 3
1. 21 10 / 5656 3.7p b = × =

Total moment of normal forces about the fulcrum C,

     
N 1 2 1 1 2

1 1
. . . ( ) (sin 2 sin 2 )

2 2
M p b r OC

 = θ −θ + θ − θ  

= 
1 1

3.7 100 75 (2.356 0.786) (sin 90 sin 270 )
2 2

 × × × − + ° − °  
= 13 875 (1.57 + 1) = 35 660 N-mm

and total moment of friction force about the fulcrum C,

       F 1 1 2 2 1. . . (cos cos ) (cos 2 cos 2 )
4

OC
M p b r r

 = µ θ − θ + θ − θ  

= 0.4 × 3.7 × 100 
75

100 (cos 45 cos135 ) (cos 270 cos90 )
4

 ° − ° + ° − °  
= 148 × 141.4 = 20 930 N-mm

All dimensions in mm

Fig. 19.26
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Taking moments about the fulcrum C, we have

 Q × 150 = M
N

 + M
F
 = 35 660 + 20 930 = 56 590

∴                      Q = 56 590 / 150 = 377 N Ans.

2. Force ‘Q’ required to operate the brake when drum rotates anticlockwise

Taking moments about the fulcrum C, we have

 Q × 150 = M
N

 – M
F
 = 35 660 – 20 930 = 14 730

∴                     Q = 14 730/150 = 98.2 N Ans.

19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle19.11. Braking of a Vehicle

In a four wheeled moving vehicle, the brakes may be applied to

1. the rear wheels only,

2. the front wheels only, and

3. all the four wheels.

In all the above mentioned three types of

braking, it is required to determine the retardation

of the vehicle when brakes are applied. Since the

vehicle retards, therefore it is a problem of

dynamics. But it may be reduced to an equivalent

problem of statics by including the inertia force in

the system of forces actually applied to the vehicle.

The inertia force is equal and opposite to the

braking force causing retardation.

Now, consider a vehicle moving up an

inclined plane, as shown in Fig. 19.27.

Let  α   =  Angle of inclination of the plane to the horizontal,

m = Mass of the vehicle in kg (such that its weight is m.g newtons),

h = Height of the C.G. of the vehicle above the road surface in metres,

x = Perpendicular distance of C.G. from the rear axle in metres,

L =  Distance between the centres of the rear and front wheels (also called wheel

base) of the vehicle in metres,

R
A

= Total normal reaction between the ground and the front wheels in newtons,

R
B

= Total normal reaction between the ground and the rear wheels in newtons,

µ = Coefficient of friction between the tyres and road surface, and

a = Retardation of the vehicle in m/s2.

We shall now consider the above mentioned three cases of braking, one by one. In all these

cases, the braking force acts in the opposite direction to the direction of motion of the vehicle.

1. When the brakes are applied to the rear wheels only

It is a common way of braking the vehicle in which the braking force acts at the rear wheels

only.

Let   FB = Total braking force (in newtons) acting at the rear wheels due to the

         application of the brakes. Its maximum value is µ.RB.

The various forces acting on the vehicle are shown in Fig. 19.27. For the equilibrium of the

vehicle, the forces acting on the vehicle must be in equilibrium.

Resolving the forces parallel to the plane,

B . .sin .F m g m a+ α =  . . . (i)

Fig. 19.27. Motion of vehicle up the inclined

plane and brakes are applied to rear wheels only.
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Resolving the forces perpendicular to the plane,

A B . cosR R m g+ = α  . . . (ii)

Taking moments about G, the centre of gravity of the vehicle,

F
B
 × h + R

B
 × x = R

A
 (L – x)  . . . (iii)

Substituting the value of F
B
 = µ.R

B
, and R

A
 = m.g cos α  – R

B
  [from equation (ii) ] in the

above expression, we have

 µ.R
B
 × h + R

B
 × x = (m.g cos α  – R

B
) (L – x)

R
B
 (L + µ.h) = m.g cos α  (L – x)

∴ R
B
 = 

. cos ( )

.

m g L x

L h

α −
+ µ

and R
A

 = B

. cos ( )
. cos . cos

.

m g L x
m g R m g

L h

α −α − = α −
+ µ

. cos ( . )

.

m g x h

L h

α + µ=
+ µ

We know from equation (i),

            
B B B. sin .

sin sin
m

F m g F R
a g g

m m

+ α µ
= = + α = + α

               
. cos ( )

sin
.

g L x
g

L h

µ α −= + α
+ µ  . . . (Substituting the value of R

B
)

Notes : 1. When the vehicle moves on a level track, then α  = 0.

∴ B A

. ( ) . ( . )
;

. .

m g L x m g x h
R R

L h L h

− +µ= =
+ µ + µ   and  

. ( )

.

g L x
a

L h

µ −=
+ µ

2. If the vehicle moves down the plane, then equation (i) becomes

B . sin .F m g m a− α =

∴
B B. . cos ( )

.sin .sin sin
.

F R g L x
a g g g

m m L h

µ µ α −= − α = − α = − α
+ µ

2. When the brakes are applied to front wheels only

It is a very rare way of braking the

vehicle, in which the braking force acts at the

front wheels only.

Let F
A

 = Total braking force (in newtons)

     acting at the front wheels due to

   the application of brakes. Its

    maximum value is µ.R
A

.

The various forces acting on the vehicle

are shown in Fig. 19.28.

Resolving the forces parallel to the

plane,

A . sin .F m g m a+ α = . . . (i)

Resolving the forces perpendicular to

the plane,

    A B . cosR R m g+ = α  . . . (ii)

Fig. 19.28. Motion of the vehicle up the inclined

plane and brakes are applied to front wheels only.
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Taking moments about G, the centre of gravity of the vehicle,

F
A

 × h + R
B
 × x = R

A
 (L – x)

Substituting the value of F
A

 = µ.R
A

 and R
B
 = m.g cos α – R

A
 [from equation (ii) ] in the above

expression, we have

µ.R
A

 × h + (m.g cos α – R
A

) x = R
A

 (L – x)

µ.R
A

 × h + m.g cos α × x = R
A

 × L

∴ A

. cos

.

m g x
R

L h

α×=
− µ

and B A
. cos

. cos . cos
.

m g x
R m g R m g

L h

α×= α − = α −
− µ

    
.

. cos 1 . cos
. .

x L h x
m g m g

L h L h

   − µ −= α − = α   − µ − µ   
We know from equation (i),

  
A A. sin . . sinF m g R m g

a
m m

+ α µ + α
= =

     = 
. . cos . sin

( . )

m g x m g

L h m m

µ α × α+
− µ  . . . (Substituting the value of R

A
)

    = 
. cos

sin
.

g x
g

L h

µ α × + α
− µ

Notes : 1. When the vehicle moves on a level track, then α  = 0.

∴ A B
. . ( . )

; ;
. .

m g x m g L h x
R R

L h L h

× −µ −
= =

− µ − µ    and   
.

.

g x
a

L h

µ ⋅
=

− µ
2. When the vehicle moves down the plane, then equation (i) becomes

  A . sin .F m g m a− α =

∴  
A A. . cos

.sin .sin sin
m .

F R g x
a g g g

m L h

µ µ α ×= − α = − α = − α
− µ

3. When the brakes are applied to all the four

wheels

This is the most common way of braking

the vehicle, in which the braking force acts on

both the rear and front wheels.

Let  F
A

 = Braking force provided by the

             front wheels = µ.R
A

, and

    F
B
 = Braking force provided by the

              rear wheels = µ.R
B
.

A little consideration will show that when

the brakes are applied to all the four wheels, the

braking distance (i.e. the distance in which the

vehicle is brought to rest after applying the

brakes) will be the least. It is due to this reason

that the brakes are applied to all the four wheels.

The various forces acting on the vehicle

are shown in Fig. 19.29.

Fig. 19.29. Motion of the vehicle up the inclined

plane and the brakes are applied to all

the four wheels.
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Resolving the forces parallel to the plane,

                      A B . sin .F F m g m a+ + α =  . . . (i)

Resolving the forces perpendicular to the plane,

           A B . cosR R m g+ = α  . . . (ii)

Taking moments about G, the centre of gravity of the vehicle,

                     A B B A( ) ( )F F h R x R L x+ + × = −  . . . (iii)

Substituting the value of A A B B. , .F R F R= µ = µ  and B A. cosR m g R= α −  [From equation

(ii)] in the above expression,

A B A A( ) ( . cos ) ( )R R h m g R x R L xµ + + α − = −

A A A A( . cos ) ( . cos ) ( )R m g R h m g R x R L xµ + α − + α − = −

        A. . cos . cosm g h m g x R Lµ α × + α× = ×

∴               R
A 

= 
. cos ( . )m g h x

L

α µ +

and             B A

cos ( . )
. cos . cos

mg h x
R m g R m g

L

α µ += α − = α −

                           = 
. .

. cos 1 . cos
h x L h x

m g m g
L L

µ + − µ −   α − = α      
Now from equation (i),

   A B. . sin .R R m g m aµ + µ + α =

  A B( ) . sin .R R m g m aµ + + α =

   . . .cos . sin .m g m g m aµ α + α =  . . . [From equation (ii)]

∴          ( .cos sin )a g= µ α + α
Notes : 1. When the vehicle moves on a level track, then α  = 0.

∴                        A B

. ( . ) .
; . ;

m g h x L h x
R R m g

L L

µ + − µ − = =   
 and a = g.µ

2. If the vehicle moves down the plane, then equation (i) may be written as

            A B . sin .F F m g m a+ − α =

or                       A B( ) . sin .R R m g m aµ + − α =

    . . cos . sin .m g m g m aµ α − α =
and                          ( .cos sin )a g= µ α − α

Example 19.14. A car moving on a level road at a speed 50 km/h has a wheel base 2.8

metres, distance of C.G. from ground level 600 mm, and the distance of C.G. from rear wheels 1.2

metres. Find the distance travelled by the car before coming to rest when brakes are applied,

1. to the rear wheels, 2. to the front wheels, and 3. to all the four wheels.

The coefficient of friction between the tyres and the road may be taken as 0.6.

Solution. Given : u = 50 km/h = 13.89 m/s ; L = 2.8 m ; h = 600 mm = 0.6 m ; x = 1.2 m ; µ = 0.6

 Let      s = Distance travelled by the car before coming to rest.

1. When brakes are applied to the rear wheels

Since the vehicle moves on a level road, therefore retardation of the car,

             
2. ( ) 0.6 9.81(2.8 1.2)

2.98 m/s
. 2.8 0.6 0.6

g L x
a

L h

µ − × −= = =
+ µ + ×
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We know that for uniform retardation,

2 2(13.89)

2 2 2.98

u
s

a
= =

×
= 32.4 m Ans.

2. When brakes are applied to the front wheels

Since the vehicle moves on a level road, therefore retardation of the car,

2. . 0.6 9.18 1.2
2.9 m/s

. 2.8 0.6 0.6

g x
a

L h

µ × ×= = =
− µ − ×

We know that for uniform retardation,

2 2(13.89)

2 2 2.9

u
s

a
= =

×
 = 33.26 m Ans.

3. When the brakes are applied to all the four wheels

Since the vehicle moves on a level road, therefore retardation of the car,

2. 9.81 0.6 5.886 m/sa g= µ = × =
We know that for uniform retardation,

2 2(13.89)

2 2 5.886

u
s

a
= =

×
 = 16.4 m  Ans.

Example 19.15. A vehicle moving on a rough plane inclined at 10° with the horizontal at a

speed of 36 km/h has a wheel base 1.8 metres. The centre of gravity of the vehicle is 0.8 metre from

the rear wheels and 0.9 metre above the inclined plane. Find the distance travelled by the vehicle

before coming to rest and the time taken to do so when 1. The vehicle moves up the plane, and 2. The

vehicle moves down the plane.

The brakes are applied to all the four wheels and the coefficient of friction is 0.5.

Solution. Given :  α = 10°; u = 36 km / h = 10 m / s ; L = 1.8 m ; x = 0.8 m ; h = 0.9 m ; µ = 0.5

Let                s = Distance travelled by the vehicle before  coming to rest, and

              t = Time taken by the vehicle in coming to rest.

1.  When the vehicle moves up the plane and brakes are applied to all the four wheels

Since the vehicle moves up the inclined plane, therefore retardation of the vehicle,

( cos sin )a g= µ α + α

    = 9.81 (0.5cos10 sin10 ) 9.81(0.5 0.9848 0.1736)° + ° = × + = 6.53 m/s2

We know that for uniform retardation,

2 2(10)

2 2 6.53

u
s

a
= =

×
 = 7.657 m Ans.

and final velocity of the vehicle (v),

0 . 10 6.53u a t t= + = − . . .(Minus sign due to retardation)

∴                 t = 10 / 6.53 = 1.53 s Ans.

2.  When the vehicle moves down the plane and brakes are applied to all the four wheels

Since the vehicle moves down the inclined plane, therefore retardation of the vehicle,

( cos sin )a g= µ α − α

   9.81(0.5cos10 sin10 ) 9.81(0.5 0.9848 0.1736)= °− ° = × − = 3.13 m/s2
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We know that for uniform retardation,

2 2(10)

2 2 3.13

u
s

a
= =

×
= 16 m Ans.

and final velocity of the vehicle (v),

0 = u + a.t = 10 – 3.13 t . . . (Minus sign due to retardation)

∴   t = 10/3.13 = 3.2 s Ans.

Example 19.16. The wheel base of a car is 3 metres and its centre of gravity is 1.2 metres

ahead the rear axle and 0.75 m above the ground level. The coefficient of friction between the wheels

and the road is 0.5. Determine the maximum deceleration of the car when it moves on a level road,

if the braking force on all the wheels is the same and no wheel slip occurs.

Solution. Given : L = 3 m ; x = 1.2 m ; h = 0.75 m ; µ = 0.5

Let a = Maximum deceleration of the car,

m = Mass of the car,

F
A

 and F
B
 = Braking forces at

the front and

rear wheels

 respectively, and

 R
A

and R
B  

= Normal reactions

   at the front and

 rear wheels

 respectively.

The various forces acting on the car are

shown in Fig. 19.30.

We shall consider the following two cases:

(a) When the slipping is imminent at the rear wheels

We know that when the brakes are applied to all the four wheels and the vehicle moves on a

level road, then

            B
. 3 0.5 0.75 1.2

. 9.81 4.66 N
3

L h x
R m g m m

L

− µ − − × −   = = × =      
and       F

A
 + F

B
 = m.a or 2µ.  R

B
 = m.a . . . (∵  F

B
 = F

A
 and F

B
 = µ.R

B
)

∴             2 × 0.5 × 4.66 m = m.a or a = 4.66 m/s2

(b) When the slipping is imminent at the front wheels

We know that when the brakes are applied to all the four wheels and the vehicle moves on a

level road, then

            A

. ( . ) 9.81(0.5 0.75 1.2)
5.15 N

3

m g h x m
R m

L

µ + × × += = =

and                    F
A

 + F
B
 = m.a      or          2µ . R

A
 = m.a . . . (∵  F

A
 = F

B
 and F

A
 = µ . R

A
)

∴       2 × 0.5 × 5.15 m = m.a      or                 a = 5.15 m/s2

Hence the maximum possible deceleration is 4.66 m/s2 and slipping would occur first at the

rear wheels. Ans.

19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer19.12. Dynamometer

A dynamometer is a brake but in addition it has a device to measure the frictional resistance.

Knowing the frictional resistance, we may obtain the torque transmitted and hence the power of the

engine.

Fig. 19.30
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19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers19.13. Types of Dynamometers

Following are the two types of

dynamometers, used for measuring the brake

power of an engine.

1. Absorption dynamometers, and

2. Transmission dynamometers.

In the absorption dynamometers, the

entire energy or power produced by the

engine is absorbed by the friction resistances

of the brake and is transformed into heat,

during the process of measurement. But in

the transmission dynamometers, the energy

is not wasted in friction but is used for doing

work. The energy or power produced by the

engine is transmitted through the dynamom-

eter to some other machines where the power

developed is suitably measured.

19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers19.14. Classification of Absorption Dynamometers

The following two types of absorption dynamometers are important from the subject point of

view :

1. Prony brake dynamometer, and 2. Rope brake dynamometer.

These dynamometers are discussed, in detail, in the following pages.

19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer19.15. Prony Brake Dynamometer

A simplest form of an absorption type dynamometer is a prony brake dynamometer, as shown

in Fig. 19.31. It consists of two wooden blocks placed around a pulley fixed to the shaft of an engine

whose power is required to be measured. The blocks are clamped by means of two bolts and nuts, as

shown in Fig. 19.31. A helical spring is provided between the nut and the upper block to adjust the

pressure on the pulley to control its speed. The upper block has a long lever attached to it and carries

a weight W at its outer end. A counter weight is placed at the other end of the lever which balances the

brake when unloaded. Two stops S, S are provided to limit the motion of the lever.

Fig. 19.31. Prony brake dynamometer.

When the brake is to be put in operation, the long end of the lever is loaded with suitable

weights W and the nuts are tightened until the engine shaft runs at a constant speed and the lever is in

horizontal position. Under these conditions, the moment due to the weight W must balance the mo-

ment of the frictional resistance between the blocks and the pulley.

Dynamometers  measure the power of the engines.
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Let W = Weight at the outer end of the lever in newtons,

L = Horizontal distance of the weight W

from the centre of the pulley in metres,

F = Frictional resistance between the blocks

and the pulley in newtons,

R = Radius of the pulley in metres, and

N = Speed of the shaft in r.p.m.

We know that the moment of the frictional re-

sistance or torque on the shaft,

                T = W.L = F.R N-m

Work done in one revolution

       = Torque × Angle turned in radians

                     = 2 N-mT × π
  ∴     Work done per minute

            = 2 N-mT N× π
We know that brake power of the engine,

            
Work done per min. 2 . 2

. . watts
60 60 60

T N W L N
B P

× π × π= = =

Notes : 1. From the above expression, we see that while determining the brake power of engine with the help of

a prony brake dynamometer, it is not necessary to know the radius of the pulley, the coefficient of friction

between the wooden blocks and the pulley and the pressure exerted by tightening of the nuts.

2. When the driving torque on the shaft is not uniform, this dynamometer is subjected to severe oscil-

lations.

19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer19.16. Rope Brake Dynamometer

It is another form of absorption type dynamometer which is most commonly used for measur-

ing the brake power of the engine. It consists of one, two or more ropes wound around the flywheel or

rim of a pulley fixed rigidly to the shaft of an engine. The upper end of the ropes is attached to a spring

balance while the lower end of the ropes is kept in position by applying a dead weight as shown in Fig.

19.32. In order to prevent the slipping of the rope over the flywheel, wooden blocks are placed at

intervals around the circumference of the flywheel.

In the operation of the brake, the engine is made to run at a constant speed. The frictional

torque, due to the rope, must be equal to the torque being transmitted by the engine.

Let W = Dead load in newtons,

S = Spring balance reading in newtons,

D = Diameter of the wheel in metres,

d = diameter of rope in metres, and

N  = Speed of the engine shaft in r.p.m.

∴  Net load on the brake

   = (W – S) N

We know that distance moved in one revolution

  = ( )mD dπ +

Another dynamo
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∴     Work done per revolution

= ( ) ( ) N-mW S D d− π +
and work done per minute

= ( ) ( ) N-mW S D d N− π +

Fig. 19.32. Rope brake dynamometer.

∴     Brake power of the engine,

 
Work done per min ( ) ( )

B.P watts
60 60

W S D d N− π += =

If the diameter of the rope (d) is neglected, then brake

power of the engine,

( )
B.P. watts

60

W S D N− π=

Note: Since the energy produced by the engine is absorbed by the

frictional resistances of the brake and is transformed into heat,

therefore it is necessary to keep the flywheel of the engine cool with

soapy water. The flywheels have their rims made of a channel section

so as to receive a stream of water which is being whirled round by

the wheel. The water is kept continually flowing into the rim and is

drained away by a sharp edged scoop on the other side, as shown in

Fig. 19.32.

Example 19.17. In a laboratory experiment, the

following data were recorded with rope brake:

Diameter of the flywheel 1.2 m; diameter of the rope

12.5 mm; speed of the engine 200 r.p.m.; dead load on the

brake 600 N; spring balance reading 150 N. Calculate the

brake power of the engine.

Solution. Given : D = 1.2 m ; d = 12.5 mm

= 0.0125 m ; N = 200 r.p.m ; W = 600 N ; S = 150 N

An engine is being readied for

testing on a dynamometer
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We know that brake power of the engine,

( ) ( ) (600 150) (1.2 0.0125)200
B.P. 5715 W

60 60

W S D d N− π + − π += = =

       = 5.715 kW Ans.

19.17.19.17.19.17.19.17.19.17. Classification of Transmission DynamometersClassification of Transmission DynamometersClassification of Transmission DynamometersClassification of Transmission DynamometersClassification of Transmission Dynamometers
The following types of transmission dynamometers are important from the subject point of

view :

1. Epicyclic-train dynamometer, 2. Belt transmission dynamometer, and 3. Torsion dyna-

mometer.

We shall now discuss these dynamometers, in detail, in the following pages.

19.18.19.18.19.18.19.18.19.18. Epicyclic-train DynamometerEpicyclic-train DynamometerEpicyclic-train DynamometerEpicyclic-train DynamometerEpicyclic-train Dynamometer

Fig. 19.33. Epicyclic train dynamometer.

An epicyclic-train dynamometer, as shown in Fig. 19.33, consists of a simple epicyclic train

of gears, i.e. a spur gear, an annular gear (a gear having internal teeth) and a pinion. The spur gear is

keyed to the engine shaft (i.e. driving shaft) and rotates in anticlockwise direction. The annular gear

is also keyed to the driving shaft and rotates in clockwise direction. The pinion or the intermediate

gear meshes with both the spur and annular gears. The pinion revolves freely on a lever which is

pivoted to the common axis of the driving and driven shafts. A weight w is placed at the smaller end

of the lever in order to keep it in position. A little consideration will show that if the friction of the pin

on which the pinion rotates is neglected, then the tangential effort P exerted by the spur gear on the

pinion and the tangential reaction of the annular gear on the pinion are equal.

Since these efforts act in the upward direction as shown, therefore total upward force on the

lever acting through the axis of the pinion is 2P. This force tends to rotate the lever about its fulcrum

and it is balanced by a dead weight W at the end of the lever. The stops S, S are provided to control the

movement of the lever.

For equilibrium of the lever, taking moments about the fulcrum F,

 2P × a = W.L or P = W.L /2a

Let   R = Pitch circle radius of the spur gear in metres, and

      N  = Speed of the engine shaft in r.p.m.

∴    Torque transmitted,   T = P.R

and power transmitted                    
2 . 2

watts
60 60

T N P R N× π × π= =
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19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission19.19.  Belt Transmission Dynamometer-Froude or Throneycroft Transmission

DynamometerDynamometerDynamometerDynamometerDynamometer

When the belt is transmitting power from one pulley to another, the tangential effort on the

driven pulley is equal to the difference between the tensions in the tight and slack sides of the belt. A

belt dynamometer is introduced to measure directly the difference between the tensions of the belt,

while it is running.

Fig. 19.34. Froude or Throneycroft transmission dynamometer.

A belt transmission dynamometer, as shown in Fig. 19.34, is called a Froude or Throneycroft

transmission dynamometer. It consists of a pulley A (called driving pulley) which is rigidly fixed to

the shaft of an engine whose power is required to be measured. There is another pulley B (called

driven pulley) mounted on another shaft to which the power from pulley A is transmitted. The pulleys

A and B are connected by means of a continuous belt passing round the two loose pulleys C and D

which are mounted on a T-shaped frame. The frame is pivoted at E and its movement is controlled by

two stops S,S. Since the tension in the tight side of the belt (T
1
) is greater than the tension in the slack

side of the belt (T
2
), therefore the total force acting on the pulley C (i.e. 2T

1
) is greater than the total

force acting on the pulley D (i.e. 2T
2
). It is thus obvious that the frame causes movement about E in

the anticlockwise direction. In order to balance it, a weight W is applied at a distance L from E on the

frame as shown in Fig. 19.34.

Now taking moments about the pivot E, neglecting friction,

1 22 2 .T a T a W L× = × + or 1 2

.

2

W L
T T

a
− =

Let D = diameter of the pulley A in metres, and

N = Speed of the engine shaft in r.p.m.

∴          Work done in one revolution = 1 2( ) N-mT T D− π

and workdone per minute                    = 1 2( ) N-mT T DN− π

∴    Brake power of the engine, 1 2( )
B.P. watts

60

T T DN− π
=

Example 19.18. The essential features of a transmission dynamometer are shown in Fig.

19.35. A is the driving pulley which runs at 600 r.p.m. B and C are jockey pulleys mounted on a

horizontal beam pivoted at D, about which point the complete beam is balanced when at rest. E is the

driven pulley and all portions of the belt between the pulleys are vertical. A, B and C are each 300

mm diameter and the thickness and weight of the belt are neglected. The length DF is 750 mm.

Find : 1. the value of the weight W to maintain the beam in a horizontal position when

4.5 kW is being transmitted, and 2. the value of W, when the belt just begins to slip on pulley A. The

coefficient of friction being 0.2 and maximum tension in the belt 1.5 kN.
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Fig. 19.35. All dimensions in mm.

Solution. Given : N
A

 = 600 r.p.m. : D
A

 = D
B
 = D

C
 = 300 mm = 0.3 m

1. Value of the weight W to maintain the beam in a horizontal position

Given : Power transmitted (P) = 4.5 kW = 4500 W

Let T
1
 = Tension in the tight side of the belt on pulley A, and

T
2
 = Tension in the slack side of the belt on pulley A.

∴   Force acting upwards on the pulley C = 2T
1

and force acting upwards on the pulley B = 2T
2

Now taking moments about the pivot D,

W × 750 = 2T
1
 × 300 – 2T

2
 × 300 = 600 (T

1
 – T

2
)

∴  T
1
 – T

2
 = W × 750 / 600 = 1.25 W N

We know that the power transmitted (P),

1 2 A A( ) 1.25 0.3 600
4500 11.78

60 60

T T D N W
W

− π × π× ×= = =

∴    W = 4500 / 11.78 = 382 N Ans.

2. Value of W, when the belt just begins to slip on A

Given :   µ = 0.2 ; T
1
 = 1.5 kN = 1500 N

We know that

1

2

2.3log . 0.2 0.6284
T

T

 
= µ θ = × π = 

 
. . . (∵ θ  = 180° = π rad)

    1

2

0.6284
log 0.2732

2.3

 
= = 

 

T

T
    or   

1

2

1.876
T

T
=   . . . (Taking antilog of 0.2732)

∴  T
2
 = T

1
/ 1.876 = 1500 / 1.876 = 800 N

Now taking moments about the pivot D,

               W × 750 = 2T
1
 × 300 – 2T

2
 × 300 = 2 × 1500 × 300 – 2 × 800 × 300

                = 420 × 103

∴            W = 420 × 103/ 750 = 560 N Ans.
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19.20. Torsion Dynamometer19.20. Torsion Dynamometer19.20. Torsion Dynamometer19.20. Torsion Dynamometer19.20. Torsion Dynamometer

A torsion dynamometer is used for measuring large powers particularly the power transmit-

ted along the propeller shaft of a turbine or motor vessel. A little consideration will show that when

the power is being transmitted, then the driving end of the shaft twists through a small angle relative

to the driven end of the shaft. The amount of twist depends upon many factors such as torque acting

on the shaft (T), length of the shaft (l), diameter of the shaft (D) and modulus of rigidity (C) of the

material of the shaft. We know that the torsion equation is

.T C

J l

θ=

where θ  = Angle of twist in radians, and

 J = Polar moment of inertia of the shaft.

For a solid shaft of diameter D, the polar moment of inertia

4

32
J D

π= ×

and for a hollow shaft of external diameter D and internal diameter d, the polar moment of inertia,

4 4( )
32

J D d
π= −

From the above torsion equation,
.

.
C J

T k
l

= ×θ = θ

where k = C.J/l is a constant for a particular shaft. Thus, the torque acting on the shaft is proportional

to the angle of twist. This means that if the angle of twist is measured by some means, then the torque

and hence the power transmitted may be determined.

We know that the power transmitted

2

60

T N
P

× π=  watts, where N is the speed in r.p.m.

A number of dynamometers are used to measure the angle of twist, one of which is discussed

in Art. 19.21. Since the angle of twist is measured for a small length of the shaft, therefore some

magnifying device must be introduced in the dynamometer for accurate measurement.

Example 19.19. A torsion dynamometer is fitted to a propeller shaft of a marine engine. It is

found that the shaft twists 2° in a length of 20 metres at 120 r.p.m. If the shaft is hollow with 400 mm

external diameter and 300 mm internal diameter, find the power of the engine. Take modulus of

rigidity for the shaft material as 80  GPa.

Solution. Given : θ  = 2° = 2 × π /180 = 0.035 rad ; l = 20 m ; N = 120 r.p.m. ; D = 400 mm

= 0.4 m ; d = 300 mm = 0.3 m ; C = 80 GPa =  80 × 109 N/m2

We know that polar moment of inertia of the shaft,

4 4 4 4 4( ) (0.4) (0.3) 0.0017m
32 32

J D d
π π  = − = − = 

and torque applied to the shaft,

9
3. 80 10 0.0017

0.035 238 10 N-m
20

C J
T

l

× ×= ×θ = × = ×

We know that power of the engine,
32 238 10 2 120

60 60

× π × × π×= =T N
P  = 2990 × 103 W = 2990 kW Ans.
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DO YOU KNOW ?
1. Distinguish between brakes and dynamometers.

2. Discuss the various types of the brakes.

3. Show that, in a band and block brake, the ratio of the maximum and minimum tensions in the brake

straps is

0 1 tan

1 tan

n

n

T

T

 + µ θ=  − µ θ 
where  T0 = Maximum tension,

 Tn = Minimum tension

  µ = Coefficient of friction between the blocks and drum, and

             2θ  = Angle subtended by each block at the centre of the drum.

4. Describe with the help of a neat sketch the principles of operation of an internal expanding shoe.

Derive the expression for the braking torque.

5. What are the leading and trailing shoes of an internal expanding shoe brake ?

6. What is the difference between absorption and transmission dynamometers ? What are torsion dyna-

mometers ?

7. Describe the construction and operation of a prony brake or rope brake absorption dynamometer.

8. Describe with sketches one form of torsion dynamometer and explain with detail the calculations

involved in finding the power transmitted.

9. Explain with neat sketches the Bevis-Gibson flash light dynamometer.

OBJECTIVE TYPE QUESTIONS
1. The brakes commonly used in railway trains is

(a) shoe brake (b) band brake

(c) band and block brake (d) internal expanding brake

2. The brake commonly used in motor cars is

(a) shoe brake (b) band brake

(c) band and block brake (d) internal

expanding brake

3. In a differential band brake, as shown in Fig. 19.45, the length

OA is greater than OB. In order to apply the brake, the force P

at C should

(a)  be zero (b) act in upward direction

(c) act in downward direction

4. For the brake to be self locking, the force P at C as shown in

Fig. 19.45, should

(a) be zero

(b)  act in upward direction

(c) act in downward direction

5. When brakes are applied to all the four wheels of a moving car, the distance travelled by the car before

it is brought to rest, will be

 (a) maximum  (b) minimum

6. Which of the following is an absorption type dynamometer ?

(a) prony brake dynamometer (b) rope brake dynamometer

(c) epicyclic-train dynamometer (d) torsion dynamometer

ANSWERS
1. (a) 2. (d) 3. (c) 4. (a) 5. (b) 6. (a), (b)

Fig. 19.45

GO To FIRST


